Strong-gravity signatures from relics of the early universe

Josu C. Aurrekoetxea Beecroft Fellow – Oxford U. JRF – The Queen's College

General Relativity + Standard Model

Add new forces

Add new matter

Add new physics

Ingredient 1: Theory Inspiral Merger Ringdown

Ingredient 2: Data

Time / s

Data & Best-fit Waveform: LIGO Open Science Center (losc.ligo.org); Prediction & Animation: C.North/M.Hannam (Cardiff University)

New physics!

Time / s

What are the GW signatures of new physics?

Bamber, Aurrekoetxea, Clough, Ferreira (2022)

Black hole merger simulations in wave dark matter environments

Near black holes

Image credit: NSF

Relics from the early universe

Now 13.8 billion years

Modern Galaxies

Reionizatio

Phase transitions,

Reheating

Ingredient 1: Solving GR in a computer:

Covariant form $R_{\mu\nu} - \frac{R}{2}g_{\mu\nu} = 8\pi T_{\mu\nu}$

Initial value form

Arnowitt, Deser, Misner Baumgarte, Shapiro, Shibata, Nakamura

"time"

CTTK: A new method to solve the initial data constraints Aurrekoetxea, Clough, Lim (2022)

initial data ($\partial_t g_{\mu\nu}, g_{\mu\nu}$)

non-trivial!

Fill using Einstein equation $g_{\mu\nu}(t+dt) = f(\partial_x^2 g_{\mu\nu}, g_{\mu\nu})$

"space"

"time"

Fill using Einstein equation $\partial_t g_{\mu\nu} = \partial_t^2 g_{\mu\nu} = 0$ (boring!)

"time"

initial data (Schwarzschild metric)

Fill using Einstein equation $\partial_t g_{\mu\nu} \neq \partial_t^2 g_{\mu\nu} \neq 0$ (interesting!)

boundary conditions (asymptotically flat)

"space"

Ingredient 2: Adaptive Mesh Refinement

Numerical relativity with Adaptive Mesh Refinement

www.grchombo.org

Figueras et al.

Oscilon formation during preheating

Oscillon formation during inflationary preheating with general relativity Aurrekoetxea, Clough, Muia (2023)

Featured in DiRAC 2023 calendar

Oscilon formation during preheating

Can PBHs form? What is the spectrum of GWs?

What is the effect of gravity in their formation? $C = \frac{GM}{C}$ R

Compactness

Amin, Copeland, Easther, Figueroa, Garcia, Giblin, Guth, Hertzberg, Kaiser, Kou, Mertens, Sfakianakis, Tian + many others

Inflation

- Solves homogeneity and flatness problems - Mechanism for spectrum of scale invariant fluctuations

Inflation has to end... Reheating

$\phi(t, \mathbf{x}) = \bar{\phi}(t) + \delta\phi(t, \mathbf{x})$

Resonances: $\delta \phi$ grows

- <u>Parametric</u>: if $\overline{\phi}(t)$ periodic
- <u>Tachyonic</u>: if $\bar{\phi}(t)$ probes V'' < 0

Inflation has to end... Reheating

Start simulations here

$\phi_0 \neq 0$ very important!

x [1/m]

-0.0009

 δ

 $\ln(a) = 0.00$

 $x \ [1/m]$

Why gravity?

Growth of overdensities

$\delta_{\rm c} \equiv \frac{\rho_{\rm c}}{\bar{\rho}} - 1$

Different initial fluctuations $\langle \delta \phi^2 \rangle \langle \delta \phi^2 \rangle \langle \delta \phi^2 \rangle$

Oscillon properties

1.2

$\mathcal{C} = GM/R$ \mathcal{O} Black holes: C = 0.5

0.3

Summary

- Compactness of order $C = 10^{-3} - 10^{-2}$

- No black hole formation

Gravitational waves from cosmic strings

Coherent GW waveforms and memory from cosmic string loops Aurrekoetxea, Helfer, Lim (2020)

Revisiting the cosmic string origin of GW190521 Aurrekoetxea, Hoy, Hannam, Helfer, Lim (inprep)

Gravitational waves from cosmic strings

What are the GR waveforms of cosmic strings?

Can we search (and find) them in data?

Damour, Vilenkin Garfinkle, Vachaspati Laguna, Matzner Blanco-Pillado, Olum, Wachter Chernoff, Flanagan, Wardell

Cosmic string!

GW strain data Detector

Time / s

What are cosmic strings?

Image credit: David Daverio

universe

universe

Cosmic strings (1D)

universe

Formation

Key parameter: string tension $G\mu$

Cosmic string formation

Credit: Ciaran O'Hare

Abelian Higgs + GR

$M_0 = 2\pi\mu R_0$

$G\mu \approx 10^{-8}$ $R \approx 100$ a.u.

$M \approx 100 M_{\odot}$

Aurrekoetxea, Helfer, Lim (2020) Coherent GW waveforms and memory from cosmic string loops

"Hoop conjecture"

Schwarzschild radius

$$R = R_0 \cos\left(t/R_0\right)$$

String loop dynamics

strain

time

Radiation in jets

\mathcal{X}

time

LISA and LIGO sensitivity

Sensitivity

LISA and LIGO sensitivity

Sensitivity

Example: GW190521

with Charlie Hoy, Hannam, Helfer, Lim

Credit: LVK collaboration

(in preparation)

[2009.01190]

Properties and Astrophysical Implications of the $150 M_{\odot}$ Binary Black Hole Merger GW190521

GW190521 is identified by the cosmic string matched filter search pipeline (Aasi et al. 2014b; Abbott et al. 2018b); however, the maximum S/Ns in this search (~ 6 and ~ 8 in LIGO Hanford and Livingston, respectively) are much lower than for modeled BBH search templates, best-fit binary merger waveform models, or unmodeled reconstructions, suggesting that the data strongly prefer a binary merger model to a cosmic string or cusp.

Example: GW190521

with Charlie Hoy, Hannam, Helfer, Lim

(in preparation)

 $G\mu \approx 10^{-7}$ $R_0 \approx 4 \,\mathrm{AU}$ $d_L \approx 3 \,\mathrm{Gpc}$

Example: GW190521

with Charlie Hoy, Hannam, Helfer, Lim

Summary

Oscillons during preheating:

GWs from cosmic strings:

Strong-field gravity interesting for early Universe

josu.aurrekoetxea@physics.ox.ac.uk

-Gravity can play an important role -Compactness $C \approx 10^{-2} - 10^{-3}$ -Not enough for PBH

-First GR waveforms of strings

-Louder events for lighter strings -Searches: GW190521?

