On the propagation of gravitational waves: difraction, dispersion & birefringence

Miguel Zumalacárregui

Max Planck Institute for Gravitational Physics (Albert Einstein Institute)

Niels Bohr Institute, June 13rd, 2023

miguel.zumalacarregui@aei.mpg.de

Collaborators: S. Savastano, G. Tambalo, H. Villarrubia-Rojo, R. Stiskalek, M. Oancea, L. Dai, HY Cheung,

Miguel Zumalacárregui (AEI) GW difraction, dispersion & birefringence (1)

Wave propagation

Miguel Zumalacárregui (AEI)

Outline

- Introduction
- Wave-optics lensing
 - Lens (sub)structure
 - Light halos & dark matter
- Strong-field lensing
 - Extreme environments
- Lensing beyond Einstein
 - ightarrow ask me latter (or JM anytime)
- Outlook & conclusions

Outline

- Introduction
- Wave-optics lensing
 - Lens (sub)structure
 - Light halos & dark matter
- Strong-field lensing
 - Extreme environments
- Lensing beyond Einstein
 - ightarrow ask me latter (or JM anytime)
- Outlook & conclusions

GW150914: first detection

(LIGO '16)

GW170817: only multi-messenger (LIGO '17, Fermi'17, ···)

Neutron stars \rightarrow Nuclear physics, nucleosynthesis, Hubble's constant...

GW speed $|c_q/c-1| < 10^{-15} \rightarrow \text{Stringent test of GR!}$

(Ezquiaga & MZ, Creminelli & Vernizzi, Baker, Bellini+... '17)

GW190521: a lot of questions!

(2009.01075)

→ Mass ∈ pair-instability supernova gap[♠] Eccentric?[●]

 \rightarrow dynamical origin

 \rightarrow Possible counterpart^{*}

 \rightarrow AGN environment

(*Graham+19, *Esteles+21, *Romero-Shaw+22...)

$\mathcal{O}(100)~\mathrm{GW}$ events

4-OGC: Open Gravitational-wave Catalog 2015-2020

 \rightarrow astrophysics (BH origin), cosmology (distances, lensing), fundamental physics

Miguel Zumalacárregui (AEI)

GW difraction, dispersion & birefringence (7)

$\mathcal{O}(100)$ GW events

Masses in the Stellar Graveyard

 \rightarrow astrophysics (BH origin), cosmology (distances, lensing), fundamental physics

GW difraction, dispersion & birefringence (7) Miguel Zumalacárregui (AEI)

Why GW lensing?

 $\bullet~{\sf EM}$ lensing \rightarrow Large-scale structure, dark matter...

Why GW lensing?

- EM lensing \rightarrow Large-scale structure, dark matter...
- GWs highly complementary:
 - Coherent, low frequency \rightarrow wave effects
 - Weakly coupled \rightarrow universe transparent to GWs
 - Well modeled \rightarrow less uncertainty

Why GW lensing?

- EM lensing \rightarrow Large-scale structure, dark matter...
- GWs highly complementary:
 - Coherent, low frequency \rightarrow wave effects
 - Weakly coupled \rightarrow universe transparent to GWs
 - Well modeled \rightarrow less uncertainty
- Many GW events \rightarrow lensing increasingly relevant (e.g. LIGO/Virgo/Kagra searches)

Miguel Zumalacárregui (AEI)

GW difraction, dispersion & birefringence (8)

Outline

- Introduction
- Wave-optics lensing
 - Lens (sub)structure
 - Light halos & dark matter
- Strong-field lensing
 - Extreme environments
- Lensing beyond Einstein
 - ightarrow ask me latter (or JM anytime)
- Outlook & conclusions

Geometric optics

(Schneider+ '92)

Lens equation:

$$\mathsf{Images} \ \vec{x}_I(\vec{y}) \to \begin{cases} \mathsf{magnification} & \mu_I \\ \mathsf{time-delay} & T_I \\ \mathsf{morse \ phase} & n_I \in (0, \pi/2, \pi) \end{cases}$$

Wave optics

(Takahashi & Nakamura 03)

Point lens:

Einstein radius

$$R_E = \sqrt{\frac{4GM_LD_LD_{LS}}{D_S}}$$

Dimensionless frequency

$$w \equiv 8\pi G M_{Lz} f$$

Amplification factor

$$F(w) = \frac{\tilde{h}_{\mathsf{lens}}}{\tilde{h}_{\mathsf{flat}}}$$

(Savastano, Vernizzi & MZ 2212.14697, LISA cosmo white paper 2204.05434)

Wave optics

(Takahashi & Nakamura 03)

Point lens:

Einstein radius

$$R_E = \sqrt{\frac{4GM_LD_LD_{LS}}{D_S}}$$

Dimensionless frequency

 $w \equiv 8\pi G M_{Lz} f$

Amplification factor

$$F(w) = \frac{\tilde{h}_{\rm lens}}{\tilde{h}_{\rm flat}}$$

(Savastano, Vernizzi & MZ 2212.14697, LISA cosmo white paper 2204.05434)

$$w \sim \left(\frac{M_L}{10^4 M_\odot}\right) \left(\frac{f}{\mathrm{Hz}}\right)$$

(E.g. $30 + 30M_{\odot}$ starting at 40Hz)

Miguel Zumalacárregui (AEI) GW difraction, dispersion & birefringence (12)

$$w \sim \left(\frac{M_L}{10^4 M_\odot}\right) \left(\frac{f}{\mathrm{Hz}}\right)$$

• Perturbative $(w \rightarrow 0)$

 $F \approx 1 + Aw^{\alpha}$

(E.g. $30 + 30M_{\odot}$ starting at 40Hz)

$$w \sim \left(\frac{M_L}{10^4 M_\odot}\right) \left(\frac{f}{\rm Hz}\right)$$

• Perturbative $(w \rightarrow 0)$

 $F \approx 1 + Aw^{\alpha}$

Wave Optics

$$F = \frac{w}{2\pi i} \int d\vec{x} e^{iwT(\vec{x})}$$

(E.g. $30 + 30M_{\odot}$ starting at 40Hz)

$$w \sim \left(\frac{M_L}{10^4 M_\odot}\right) \left(\frac{f}{\rm Hz}\right)$$

• Perturbative $(w \rightarrow 0)$

 $F \approx 1 + Aw^{\alpha}$

Wave Optics

$$F = \frac{w}{2\pi i} \int d\vec{x} e^{iwT(\vec{x})}$$

• Geometric optics $(w o \infty)$

(E.g. $30 + 30 M_{\odot}$ starting at 40Hz)

GW difraction, dispersion & birefringence (12)

Probing a cored lens with GWs

Cored profile $ho(r) \propto rac{1}{r^2+r_c^2}$ e.g. warm DM, ultra-light DM self-interacting DM

(Tambalo, MZ+ 2212.11960) $(10^{17} - 10^{17$

(Nadler + 20)

Probing a cored lens with GWs

(Tambalo, MZ+ 2212.11960)

Cored profile $\rho(r) \propto \frac{1}{r^2+r_c^2}$ e.g. warm DM, ultra-light DM self-interacting DM

Probing a cored lens with GWs (Tambalo, MZ+ 2212.11960)

$$\rho(r) \propto \frac{1}{r^2 + r_c^2}$$

e.g. warm DM, ultra-light DM self-interacting DM

lens density

$$10^3$$

 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2
 10^2

Probing a cored lens with GWs (Tambalo, MZ+ 2212.11960) Cored profile $\rho(r) \propto \frac{1}{r^2 + r_c^2}$

e.g. warm DM, ultra-light DM self-interacting DM

100

Probing a cored lens with GWs

Cored profile $ho(r) \propto rac{1}{r^2+r_c^2}$ e.g. warm DM, ultra-light DM self-interacting DM

(Tambalo, MZ+ 2212.11960)

Tests of Dark Matter

(Mocz+20, Hui+16, \cdots)

"Fuzzy" DM: ultra-light axion $r_c > 0.33 \mathrm{kpc} \frac{10^9 M_{\odot}}{M_c} \left(\frac{10^{-22} \mathrm{eV}}{m_{\phi}} \right)^2$

Tests of Dark Matter

(Mocz+20, Hui+16, \cdots)

"Fuzzy" DM: ultra-light axion $r_c > 0.33 \text{kpc} \frac{10^9 M_{\odot}}{M_c} \left(\frac{10^{-22} \text{eV}}{m_{\phi}}\right)^2$ Assumes largest $R_E \to \text{conservative}$ (smallest x_c predicted)

 $u_{E} = u_{E} + u_{E$

Tests of Dark Matter

(Mocz+20, Hui+16, \cdots)

"Fuzzy" DM: ultra-light axion $r_c > 0.33 \text{kpc} \frac{10^9 M_{\odot}}{M_c} \left(\frac{10^{-22} \text{eV}}{m_{\phi}}\right)^2$ Assumes largest $R_E \rightarrow \text{conservative}$ (smallest x_c predicted) Compare w/ (Dalal, Kravtsov 22)

Miguel Zumalacárregui (AEI)

(Gao+21, Choi+21, Savastano+23)

 $\tilde{h}_L = F(w)\tilde{h}_0$

Green's function $h_L(t) = \int dt' \underbrace{G(t - t')}_{\mathcal{F}[F(f)]} h_0(t')$ $G(t) = \sqrt{\mu}\delta(t) + \mathcal{G}(t)$

(Gao+21, Choi+21, Savastano+23)

 $\tilde{h}_L = F(w)\tilde{h}_0$

Green's function $h_L(t) = \int dt' \underbrace{G(t - t')}_{\mathcal{F}[F(f)]} h_0(t')$ $G(t) = \sqrt{\mu}\delta(t) + \mathcal{G}(t)$

(Gao+21, Choi+21, Savastano+23)

 $\tilde{h}_L = F(w)\tilde{h}_0$

Green's function $h_L(t) = \int dt' \underbrace{G(t-t')}_{\mathcal{F}[F(f)]} h_0(t')$ $G(t) = \sqrt{\mu}\delta(t) + \mathcal{G}(t)$

(Gao+21, Choi+21, Savastano+23)

 $\tilde{h}_L = F(w)\tilde{h}_0$

Green's function $h_L(t) = \int dt' \underbrace{G(t-t')}_{\mathcal{F}[F(f)]} h_0(t')$ $G(t) = \sqrt{\mu}\delta(t) + \mathcal{G}(t)$

Probing Substructure

(Savastano+ 2306.05282)

(toy model, not a realistic halo)

Miguel Zumalacárregui (AEI)

GW difraction, dispersion & birefringence (16)

Probing Substructure

(Savastano+ 2306.05282)

(toy model, not a realistic halo)

Miguel Zumalacárregui (AEI)

GW difraction, dispersion & birefringence (16)

WO detection prospects

• Critical impact param $y_{
m cr}$: $\mathcal{M} \cdot {
m SNR}^2 > 1$ (optimistic) ($\sim 30\%$ larger than Caliskan+22) (Savastano+ 2306.05282)

WO detection prospects

- Critical impact param $y_{
 m cr}$: $\mathcal{M} \cdot {
 m SNR}^2 > 1$ (optimistic) ($\sim 30\%$ larger than Caliskan+22)
- Halo mass function (Tinker+08)
 No sub-halos (pesimistic)

(Savastano+ 2306.05282)

WO detection prospects

- Critical impact param $y_{
 m cr}$: $\mathcal{M} \cdot {
 m SNR}^2 > 1$ (optimistic) ($\sim 30\%$ larger than Caliskan+22)
- Halo mass function (Tinker+08)
 No sub-halos (pesimistic)
- MBH optical depth ~ 0.1

(higher than Gao+22, Fairbairn+22)

• Probe $M_v \sim 10^7 M_\odot$ halos?

Miguel Zumalacárregui (AEI)

(Savastano+ 2306.05282)

Outline

- Introduction
- Wave-optics lensing
 - Lens (sub)structure
 - Light halos & dark matter
- Strong-field lensing
 - Extreme environments
- Lensing beyond Einstein
 - ightarrow ask me latter (or JM anytime)
- Outlook & conclusions

(Anderson+ '19, Oancea+ '22)

Background BH Source Observer

 \sim

(Anderson+ '19, Oancea+ '22)

Gravitational spin-hall effect

$$\dot{x}^{\nu}\nabla_{\nu}p_{\mu} = -\frac{1}{2} \underbrace{\bar{R}_{\mu\nu\alpha\beta}}_{\text{Space-time}} p^{\nu} \underbrace{S^{\alpha\beta}}_{\text{GW spin}}$$

• Modified trajectory:

 $t_R - t_{\rm geo} \propto G\bar{M}/w^2$

dispersion, birefringence

(Anderson+ '19, Oancea+ '22)

Gravitational spin-hall effect

$$\dot{x}^{\nu}\nabla_{\nu}p_{\mu} = -\frac{1}{2}\underbrace{\bar{R}_{\mu\nu\alpha\beta}}_{\text{Space-time}} p^{\nu}\underbrace{S^{\alpha\beta}}_{\text{GW spin}}$$

Modified trajectory:

 $t_R - t_{\text{geo}} \propto G\bar{M}/w^2$ $t_L - t_R \propto G\bar{M}/w^3$

dispersion, birefringence

(Anderson+ '19, Oancea+ '22)

Gravitational spin-hall effect $\dot{x}^{\nu} \nabla_{\nu} p_{\mu} = -\frac{1}{2} \underbrace{\bar{R}_{\mu\nu\alpha\beta}}_{\text{Space-time}} p^{\nu} \underbrace{S^{\alpha\beta}}_{\text{GW spin}}$ • Modified trajectory: $t_{R} - t_{\text{geo}} \propto G\bar{M}/w^{2}$ $t_{L} - t_{R} \propto G\bar{M}/w^{3}$ dispersion, birefringence

• Distorted waveform:

$$\Delta t = 15 \mathrm{ms}\,\beta\,\left(\frac{10^4 M_\odot}{\bar{M}}\right) \left(\frac{40 \mathrm{Hz}}{f}\right)^2$$

Configuration dependence

(Oancea+ 2209.06459)

$$\Delta t = 15 \mathrm{ms} \overline{eta(\hat{k})} \left(rac{10^4 M_{\odot}}{ar{M}}
ight) \left(rac{40 \mathrm{Hz}}{f}
ight)^2$$

source sphere, $r_{\rm src} = 10 G \bar{M}$, a = 0.99

GSHE detection prospects

- Source ightarrow observer: $dP\propto |\mu|^{-1}$
- Detector sensitiviy, SNR distribution...
- Define effective $V_{
 m GSHE}$

(Oancea+ in prep.)

 $r_{\rm src}=10GM$, $M_{\rm BBH}=60M_{\odot}$

Miguel Zumalacárregui (AEI) GW difraction, dispersion & birefringence (21)

GSHE detection prospects

- Source ightarrow observer: $dP\propto |\mu|^{-1}$
- Detector sensitiviy, SNR distribution...
- Define effective $V_{
 m GSHE}$
- Potential sources:
 - * Mergers *very* close to BHs?
 - \star Last migration trap (Peng+21)

$$r_{
m src} \sim 15 GM$$
 :)
 $M \gtrsim 10^7 M_{\odot}$:(

(Oancea+ in prep.)

Outline

- Introduction
- Wave-optics lensing
 - Lens (sub)structure
 - Light halos & dark matter
- Strong-field lensing
 - Extreme environments
- Lensing beyond Einstein
 - \rightarrow ask me latter (or JM anytime)
- Outlook & conclusions

Outlook

 $\sim 1/600$ strongly lensed events (aLIGO) \$(Ng+17)\$ Intriguing candidate? (Dai+ 2007.12709) or not? (LVC 2105.06384)

 $\sim 1/\textit{week} \longrightarrow \sim 1/\textit{minute!}$

Searches for EM counterparts, strong lenses, small scale structure \cdots

Miguel Zumalacárregui (AEI)

Conclusions

- More data is coming!
- GWs complement EM observations
 * wave effects, low f
 * probes gravtational d.o.f.s
- Diffraction from GW lensing
 - \star dark matter
 - * lens (sub)-structure
- Dispersion in strong fields
 * extreme environments
- Opportunities for fundamental physics

Miguel Zumalacárregui (AEI)

(24)

Backup Slides

Computing amplification factor I

1) beyond Geometric Optics:

$$\sum_{I} \sqrt{|\mu_{I}|} \left(1 + i \frac{\Delta_{I}}{w} \right) e^{i(wT_{I} + \pi n_{I})}$$

(26)

Computing amplification factor I

1) beyond Geometric Optics:

$$\sum_{I} \sqrt{|\mu_{I}|} \left(1 + i \frac{\Delta_{I}}{w} \right) e^{i(wT_{I} + \pi n_{I})}$$

- 2) \mathbb{C} -deformation: $\vec{x} \to (r, \theta) \to (z(\lambda), \theta)$
 - (Feldbrugge+, Tambalo, MZ+)

Computing amplification factor I

1) beyond Geometric Optics:

$$\sum_{I} \sqrt{|\mu_{I}|} \left(1 + i \frac{\Delta_{I}}{w}\right) e^{i(wT_{I} + \pi n_{I})}$$

2) \mathbb{C} -deformation: $\vec{x} \to (r, \theta) \to (z(\lambda), \theta)$

(Feldbrugge+, Tambalo, MZ+)

Computing amplification factor II

Contour flow

$$\begin{split} \tilde{I}(\tau) &= \int dw e^{-iw\tau} I(w) \\ &= \int d^2 x \delta(\tau - T(\vec{x})) \end{split}$$

(Ulmer+ , Diego+, Tambalo, MZ+)

(27)

Computing amplification factor II

Contour flow

$$\begin{split} \tilde{I}(\tau) &= \int dw e^{-iw\tau} I(w) \\ &= \int d^2 x \delta(\tau - T(\vec{x})) \end{split}$$

(Ulmer+ , Diego+, Tambalo, MZ+)

Computing amplification factor II

Contour flow

$$\begin{split} \tilde{I}(\tau) &= \int dw e^{-iw\tau} I(w) \\ &= \int d^2x \delta(\tau - T(\vec{x})) \end{split}$$

(Ulmer+ , Diego+, Tambalo, MZ+)

Wave Optics Methods & validation

 $\mathsf{Accuracy} \lesssim \mathcal{O}(1\%) \qquad \mathsf{speed} \ \mathcal{O}(0.1)\mathsf{s}$

 $2 \times$ algorithms: \checkmark point lens (analytic sol), \checkmark extended lenses

Miguel Zumalacárregui (AEI)

Fix core size $x_c = 0.05$

Miguel Zumalacárregui (AEI)

Fix core size $x_c = 0.05$

Miguel Zumalacárregui (AEI)

Fix core size $x_c = 0.05$

Miguel Zumalacárregui (AEI)

Fix core size $x_c = 0.05$

Miguel Zumalacárregui (AEI)

Fix core size $x_c = 0.05$

7 CIS $x_c = 0.05$ U 6 0.1 0.3 50.550.6 $|^{(m)}_{(m)}|_{3}$ 1.2 $\mathbf{2}$ 10^{0} 10^{-1} 10^{1} 500 1000 1500 2000 25003000 w

Miguel Zumalacárregui (AEI)

Fisher matrix analysis

(Vallisneri '07)

$$F_{IJ} = \left(\frac{\partial h_L}{\partial \theta_I} \middle| \frac{\partial h_L}{\partial \theta_J}\right), \qquad (h|g) = 4\Re \left(\int \frac{df}{S_n(f)} \tilde{h}(f) \tilde{g}^*(f)\right)$$

•
$$\tilde{h}_L(w, \vec{\theta}) = F(w)\tilde{h}(w)$$

•
$$F \rightarrow \begin{cases} WO & (w < w_{cut}) \\ bGO & (w > w_{cut}) \end{cases}$$

$$\bullet \ \theta_I \in (\underbrace{\log(D_L), \phi_0}_{\text{source}}, \underbrace{\log(M_{Lz}), y, x_c}_{\text{lens}})$$

• Static single detector, optimal orientation...

(Caliskan+ '22 \rightarrow detailed source modeling)

Lens with a core:

Reconstructing lens parameters

Miguel Zumalacárregui (AEI)

Reconstructing lens parameters

Miguel Zumalacárregui (AEI)

LISA: vary source mass

LISA: vary source mass

Lens mass

Impact param. (y = 0.3)

<u>Core size</u> $(x_c = 0.01)$

Miguel Zumalacárregui (AEI)

Vary impact parameter

LISA ($M_{\rm BBH} = 10^{6} M_{\odot}$, fixed SNR=1000)

Lens mass

Impact param.

Core size

Vary impact parameter

LISA ($M_{\rm BBH} = 10^6 M_{\odot}$, fixed SNR=1000)

advanced LIGO ($M_{\rm BBH} = 30 M_{\odot}$, fixed SNR=100)

Miguel Zumalacárregui (AEI)

Core size

GSHE probabilities

$$\Delta t = 15 \text{ms}\,\beta \,\left(\frac{10^4 M_{\odot}}{M}\right) \left(\frac{40 \text{Hz}}{f}\right)^2$$

(34)

GW difraction, dispersion & birefringence

Miguel Zumalacárregui (AEI)

Outline

- Introduction
- Wave-optics lensing
 - Lens (sub)structure
 - Light halos & dark matter
- Strong-field lensing
 - Extreme environments
- Lensing beyond Einstein
 - ightarrow ask me latter (or JM anytime)
- Outlook & conclusions

GW lensing beyond GR

(Ezquiaga & MZ 20)

- Work in WKB ($f
 ightarrow \infty$ expansion) at leading order
- GWs $(h_+,h_{ imes})$ + new d.o.f. \leftrightarrow propagation eigenstates

(See also Dalang+ 20)

• Eigenstates split \rightarrow interfere at detector (or "echoes")

Observing polarization Time Delays Δt_{12}

 $arphi \sim 0$, amplitude $H_i \sim h_i$, head-on $30-30 M_{\odot}$ source, ${\cal A}^+=-0.38, \ {\cal A}^{ imes}=0.71$

No need for EM counterpart!
Observing polarization Time Delays Δt_{12}

 $\Delta t_{12} = 50 \text{ms}$

 $\varphi\sim 0,$ amplitude $H_i\sim h_i,$ head-on $30-30M_\odot$ source, $\mathcal{A}^+=-0.38,~\mathcal{A}^\times=0.71$

No need for EM counterpart!

Observing polarization Time Delays Δt_{12}

 $\Delta t_{12} = 700 \text{ms}$

 $\varphi\sim 0,$ amplitude $H_i\sim h_i,$ head-on $30-30M_\odot$ source, ${\cal A}^+=-0.38,~{\cal A}^\times=0.71$

No need for EM counterpart!

An example theory (Horndeski)

(Ezquiaga& MZ'20)

$$\mathcal{L} \sim \frac{M_P^2}{2} \left(1 + p_{4\phi} \frac{\phi}{M_P} \right) R + \frac{\phi}{\Lambda_4^2} \nabla_\mu \nabla_\nu \phi G^{\mu\nu}$$

An example theory (Horndeski)

(Ezquiaga& MZ'20)

$$\mathcal{L} \sim rac{M_P^2}{2} \left(1 + p_{4\phi} rac{\phi}{M_P}
ight) R + rac{\phi}{\Lambda_4^2}
abla_\mu
abla_
u \phi G^{\mu
u}$$

GW Birefringence tests

(Goyal+ 2301.04826)

- Mismatch & Injection parameter estimation studies
- ullet 43imes GWTC-3 events analyzed (false alarm $\lesssim 10^{-3}/y)$
 - GW190521 $\rightarrow \Delta t_{12} \sim 9.5$ ms \rightarrow (likely noise fluctuation)
 - Constrain $P(\Delta t_{12}) \rightarrow$ (parameterization)

Constraining example theory

(Goyal+ 2301.04826)

$$\mathcal{L} \sim \frac{M_P^2}{2} \left(1 + p_{4\phi} \frac{\phi}{M_P} \right) R + \frac{\phi}{\Lambda_4^2} \nabla_\mu \nabla_\nu \phi G^{\mu\nu}$$

Miguel Zumalacárregui (AEI)

Constraining example theory

(Goyal+ 2301.04826)

$$\mathcal{L} \sim \frac{M_P^2}{2} \left(1 + p_{4\phi} \frac{\phi}{M_P} \right) R + \frac{\phi}{\Lambda_4^2} \nabla_\mu \nabla_\nu \phi G^{\mu\nu}$$

• Leading order $\omega \to \overline{\infty}$ in $k_{\mu} \equiv \theta_{,\mu}$ (phase)

$$egin{pmatrix} \Box_h & 0 & M_\phi \Box_m \ 0 & \Box_h & 0 \ M_\phi \Box_m & 0 & \Box_s \ \end{pmatrix} egin{pmatrix} h_+ \ h_ imes \ arphi \ arphi$$

• Mixing M_{ij} , speeds $\Box_I \propto k_0^2 - c_I^2(\hat{k}) |\vec{k}|^2$

• Leading order $\omega \to \overline{\infty}$ in $k_{\mu} \equiv \theta_{,\mu}$ (phase)

$$\begin{pmatrix} \Box_h & 0 & M_{\phi} \Box_m \\ 0 & \Box_h & 0 \\ M_{\phi} \Box_m & 0 & \Box_s \end{pmatrix} \begin{pmatrix} h_+ \\ h_{\times} \\ \varphi \end{pmatrix} = 0$$

- Mixing M_{ij} , speeds $\Box_I \propto k_0^2 c_I^2(\hat{k}) |\vec{k}|^2$
- Diagonalize:
 - Pure metric: $H_1 \propto h_{ imes}$, $c_1^2 = c_h^2$

• Leading order $\omega \to \infty$ in $k_{\mu} \equiv \theta_{,\mu}$ (phase)

$$\begin{pmatrix} \Box_h & 0 & M_{\phi} \Box_m \\ 0 & \Box_h & 0 \\ M_{\phi} \Box_m & 0 & \Box_s \end{pmatrix} \begin{pmatrix} h_+ \\ h_{\times} \\ \varphi \end{pmatrix} = 0$$

- Mixing M_{ij} , speeds $\Box_I \propto k_0^2 c_I^2(\hat{k}) |ec{k}|^2$
- Diagonalize:
 - Pure metric: $H_1 \propto h_{ imes}$, $c_1^2 = c_h^2$

- Mostly metric: $H_2 \propto h_+ + M_\phi \frac{\Delta c_{mh}^2}{\Delta c_{hs}^2} \varphi + \cdots$ $\boxed{c_2^2 = c_h^2 + M_\phi^2 \frac{(\Delta c_{hm}^2)^2}{\Delta c_{hs}^2} + \cdots}$

• Leading order $\omega \to \infty$ in $k_{\mu} \equiv \theta_{,\mu}$ (phase)

$$\begin{pmatrix} \Box_h & 0 & M_{\phi} \Box_m \\ 0 & \Box_h & 0 \\ M_{\phi} \Box_m & 0 & \Box_s \end{pmatrix} \begin{pmatrix} h_+ \\ h_{\times} \\ \varphi \end{pmatrix} = 0$$

- Mixing M_{ij} , speeds $\Box_I \propto k_0^2 c_I^2(\hat{k}) |\vec{k}|^2$
- Diagonalize:
 - Pure metric: $H_1 \propto h_{ imes}$, $c_1^2 = c_h^2$

- Mostly metric: $H_2 \propto h_+ + M_\phi \frac{\Delta c_{mh}^2}{\Delta c_{hs}^2} \varphi + \cdots$ $\underbrace{\left(c_2^2 = c_h^2 + M_\phi^2 \frac{(\Delta c_{hm}^2)^2}{\Delta c_{hs}^2} + \cdots\right)}$

- Mostly scalar: $H_3 \sim arphi + \mathcal{O}(M_\phi)h_+$, $c_3 = c_s + \cdots$

Lens-induced birefringence injections

(Goyal+ 2301.04826)

top: $\log(\mathcal{B}_{GR}^{LIB})$

SNR=10

SNR=15

SNR=30

SNR=40

Lens-induced birefringence Mismatch (Goyal+ 2301.04826)

Top: GW150914-like. Bottom: GW190814-like

Left: GR injection ($\Delta t^{inj} = 0$, $\phi_{lens}^{inj} = 0$) Right: Non-GR injection $\Delta t^{inj} = 10$ ms, $\phi_{lens}^{inj} = 0\pi/5$

Miguel Zumalacárregui (AEI)

GW difraction, dispersion & birefringence (43)

Lens-induced birefringence probability (Goyal+ 2301.04826)

Probability (random lens):

$$P = \exp\left(-\sum_{i}^{U} \lambda_{i}\right) \prod_{j}^{L} \left(1 - e^{\lambda_{j}}\right)$$

Cross section:

$$\sigma = \pi R_{12}^2 \left(\frac{M}{10^{12} M_{\odot}}\right)^{2r}$$

Cosmology:
$$\lambda \propto \int_0^{z_s} dz \frac{(1+z)^2}{H(z)/H_0} \int d\log(M) \sigma(M,z) f(M,z)$$