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Outline

• A numerical experiment

• Critical phenomena: uniqueness, self-similarity, and scaling

• Recent results for critical collapse of gravitational waves
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A numerical experiment...

• Consider massless scalar field

�φ ≡ g ab∇a∇b φ = 0

coupled to Einstein’s equations

• Initial data

φ = η exp(−R2/R2
0 )

• try out different amplitudes η...

• Have critical parameter η∗ so that

η < η∗ α→ 1 → flat space

η > η∗ α→ 0 → black hole
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A numerical experiment...

• Consider massless scalar field

�φ ≡ g ab∇a∇b φ = 0

coupled to Einstein’s equations

• Initial data

φ = η exp(−R2/R2
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• try out different amplitudes η...

• Have critical parameter η∗ so that
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A numerical experiment...

• Consider massless scalar field
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coupled to Einstein’s equations

• Initial data

φ = η exp(−R2/R2
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• Have critical parameter η∗ so that
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A numerical experiment...
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coupled to Einstein’s equations

• Initial data
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A numerical experiment...
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coupled to Einstein’s equations

• Initial data
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• try out different amplitudes η...
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A numerical experiment...
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coupled to Einstein’s equations
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η < η∗ α→ 1 → flat space

η > η∗ α→ 0 → black hole

5.8 6.0 6.2 6.4 6.6
t

0.0

0.2

0.4

0.6

0.8

α

η =0.30337599

η =0.30337591

0.30337599 < η∗ < 0.30337600

12/57



A numerical experiment...
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A numerical experiment...

• Consider massless scalar field

�φ ≡ g ab∇a∇b φ = 0

coupled to Einstein’s equations

• Initial data
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A numerical experiment...
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�φ ≡ g ab∇a∇b φ = 0

coupled to Einstein’s equations
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A numerical experiment...
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A numerical experiment...
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Critical Solution

• Look at scalar field φ for η → η∗ at
r = 0
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Critical Solution

• Look at scalar field φ for η → η∗ at
r = 0

• plot as function of proper time τ

• oscillations accumulate at accumulation
time

τ∗ ' 1.5698
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Critical Solution

• Look at scalar field φ for η → η∗ at
r = 0
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• plot as function of slow time
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Critical Solution

• Look at scalar field φ for η → η∗ at
r = 0

• plot as function of proper time τ

• oscillations accumulate at accumulation
time

τ∗ ' 1.5698

• plot as function of slow time

T ≡ − log(τ∗ − τ)
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Critical solution performs periodic oscillations in slow time T : discrete self-similarity
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Can we form arbitrarily small black holes?

Plot mass M of forming black hole as
function of parameter η

• find power-law scaling

M ' (η − η∗)γ

with critical exponent γ ' 0.37

• Looks familiar??

[Choptuik, 1998]
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Looks familiar?
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Critical Phenomena

Magnetic field M in MnF2 as function of temperature T
[Ashcroft & Mermin, Solid State Physics, 1976]
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Critical Phenomena in Gravitational Collapse

• Consider matter model (e.g. scalar field, fluid, vacuum...)

• Consider family of initial data parametrized by η and evolve...
• Critical parameter η∗ separates:

• supercritical data: form black hole
• subcritical data: don’t

• in vicinity of η∗ observe critical phenomena:
• dimensional quantities display scaling, e.g.

M ' (η − η∗)
γ

with critical exponent γ: depends on matter model, but not on parametrization of initial data
• spacetime approaches unique self-similar solution
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Self-similarity

• Solution contracts without changing
shape. . .
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Self-similarity

• Solution contracts without changing
shape. . .

29/57



Self-similarity

• Solution contracts without changing
shape. . .

• . . . towards accumulation event at τ = τ∗
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Self-similarity

• Solution contracts without changing
shape. . .

• . . . towards accumulation event at τ = τ∗
• radius R proportional to τ∗ − τ , so define
self-similar radius

ξ ≡ R

τ∗ − τ
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Self-similarity

• Solution contracts without changing
shape. . .

• . . . towards accumulation event at τ = τ∗
• radius R proportional to τ∗ − τ , so define
self-similar radius

ξ ≡ R

τ∗ − τ
• dimensionless quantities are functions of ξ

only,
Z = Z∗(ξ)
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Self-similarity

• Solution contracts without changing
shape. . .

• . . . towards accumulation event at τ = τ∗
• radius R proportional to τ∗ − τ , so define
self-similar radius

ξ ≡ R

τ∗ − τ
• dimensionless quantities are functions of ξ

only,
Z = Z∗(ξ)

No preferred length scale, so what sets scale of forming black hole, say??
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Three phases of evolution

• Phase I:
from initial data to something close to critical solution
(how close? depends on degree of fine-tuning. . . )

• Phase II:
critical solution plus perturbation
(until perturbation becomes nonlinear)

• Phase III:
dispersion or collapse to black hole

Length scales set by size of the self-similar solution at transition from Phase II to III
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Phase II: Perturbations of Critical Solution

• Consider perturbations ζ of the critical
solution
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Phase II: Perturbations of Critical Solution

• Consider perturbations ζ of the critical
solution

• assume that only one mode is unstable

• grows at rate γ in T = − log(τ∗ − τ)

ζ ∝ eλT = (τ∗ − τ)−λ
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Phase II: Perturbations of Critical Solution

• Consider perturbations ζ of the critical
solution

• assume that only one mode is unstable

• grows at rate γ in T = − log(τ∗ − τ)

ζ ∝ eλT = (τ∗ − τ)−λ

• to leading order also proportional to η − η∗,

ζ ∝ (η − η∗)(τ∗ − τ)−λ
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Phase II: Perturbations of Critical Solution

Recall:
ζ ∝ (η − η∗)(τ∗ − τ)−λ

Now...

• mode becomes nonlinear when ζ = ζ̄, say

• length-scale R at moment when ζ reaches ζ̄ given by

R ∝ (τ∗ − τ) ∝ ζ̄−1/λ(η − η∗)1/λ

• scaling laws, e.g.
M ∝ (η − η∗)γ

with γ = 1/λ
[Koike et.al., 1995; Maison, 1995]
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Continuous versus discrete self-similarity

Self-similarity can be...

• continuous (CSS) (e.g. fluid)
• discrete (DSS) (e.g. scalar fields: expect “super-imposed” oscillations)
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Key ingredients of critical collapse

• Unique critical solution, either CSS or DSS

• Single unstable mode, Lyapunov exponent λ

• Power-law scaling with critical exponent γ = 1/λ

• Pretty well established in spherical symmetry. . .

. . . but what about non-spherical cases??
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Critical collapse of gravitational waves
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Numerous attempts to reproduce this...

Despite many attempts...

[Alcubierre et.al., 2000; Garfinkle & Duncan, 2001; Santamaria, 2006; Rinne, 2008;
Sorkin, 2011; Hilditch et.al., 2013]

... real progress in reproducing results of Abrahams & Evans only recently:

[Hilditch et.al., 2017; Ledvinka & Khirnov, 2021; Fernández et.al., 2022]

... will complement with new results...
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Initial data

Typically, axisymmetric initial data describing gravitational waves are set up in one of
two ways:

• Brill waves:
deform conformally related metric with seed function, solve linear (flat) elliptic
equation for conformal factor
[Brill, 1959]

• Teukolsky waves:
start with analytical wave-like solution to linearized Einstein equations, then “dress
up” to satisfy constraints
[Teukolsky, 1982; Rinne, 2008]
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Evolution

Many previous attempts used 1+log slicing,

(∂t − β i∂i)α = −α2f (α)K

with
f (α) = 2/α

Very successful in many cases, but can lead
to coordinate shocks...
[Alcubierre, 1997; 2003]

[TWB et.al., in prep.]
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Evolution
Consider alternatives...

• approximate maximal slicing in BSSN
formalism
[Ledvinka & Khirnov, 2018]

• gauge-source functions in generalized
harmonic formalism
[Hilditch et.al., 2017]

• shock-avoiding slicing condition in
BSSN: use

f (α) = 1 + κ/α2

[Alcubierre, 1997; TWB & Hilditch,
2022]

[TWB et.al., in prep.]
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Uniqueness...

• Pick different families of initial data
parametrized by amplitude A

• Fine-tune to black-hole threshold A∗

• Plot maximum attained curvature I for
subcritical data

• If critical solution were unique and DSS
would expect power law

I ' |A− A∗|γ

plus periodic wiggles with unique γ [Ledvinka & Khirnov, 2021]
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Uniqueness...

Unlike in spherically symmetric case...

• γ depends on family

• critical solution family-dependent

• No clear evidence for “threshold”
solutions being DSS

[Ledvinka & Khirnov, 2021]
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Uniqueness...

Compare with gravitational collapse of
electromagnetic waves...

• distinct threshold solutions for dipole
and quadrupole waves

• each one only approximately DSS

• results in distinct values of γ

[TWB et.al., 2019; Perez Mendoza & TWB,
2021]
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Uniqueness

In absence of spherical symmetry...

• ... should not expect existence of unique threshold solution

• ... may have multiple centers of collapse

• ... any accumulation event may not be at center of symmetry

But: do gravitational-wave families with DSS threshold solutions exist??
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Self-similarity

• Consider superposition of ingoing and
outgoing Teukolsky waves

• Use BSSN code in spherical polar
coordinates

• evolve with shock-avoiding slicing
condition

• analyze Weyl scalars I and J
• plot in terms of self-similar coordinates

T = − log(τ∗ − τ) ξ = R/(τ∗ − τ)
[TWB et.al., in prep]
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Self-similarity

Weyl scalar I for near-critical solution (A ' A∗) in equatorial plane

Patterns repeat with period of approximately ∆ ' 0.65

52/57



Self-similarity

Weyl scalar J for near-critical solution (A ' A∗) in equatorial plane

Patterns repeat with period of approximately ∆ ' 0.65
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Self-similarity

• Plot curvature measures as function of
time T for near-critical solution

• approximately periodic with period
∆ ' 0.65
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Self-similarity

• Strong evidence of at least approximate DSS

• but is DSS exact?

• Not clear...

[Abrahams & Evans, 1994]
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Scaling

• Plot maximum curvature attained as
function of A∗ − A

• approximate power law with γ ' 0.29
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Summary

• Critical phenomena in gravitational collapse

• Uniqueness, self-similarity, and scaling

• Well understood in spherical symmetry
• Progress for vacuum gravitational waves

• likely no unique critical solution
• but there exist at least approximate DSS threshold solutions
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