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Critical Phenomena in Gravitational Collapse

VOLUME 70, NUMBER | PHYSICAL REVIEW LETTERS 4 JANUARY 1993

Universality and Scaling in Gravitational Collapse of a Massless Scalar Field

Matthew W. Choptuik
Center for Relativity, University of Tezas at Austin, Austin, Texas 78712-1081
(Received 22 September 1992)

I i Its from a ical study of ically tric coll ofa less scalar
field. I oomidar families of solutions, S(p], with t.he property that a crltlcnl pnrnmmr value, p* R
1g black holes from those which do not. I p in

of conjectures that (1) the st.rong -field evolution in the p — p* hmic is univerul and geneubes
structure on arbitrarily small spatiotemporal scales and (2) the masses of black holes which form
satisfy a power law Mpy o |p — p*|?, where v & 0.37 is a universal exponent.
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® A numerical experiment

e Critical phenomena: uniqueness, self-similarity, and scaling
® Recent results for critical collapse of gravitational waves
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A numerical

Consider massless scalar field

O¢ = g®*V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ =nexp(—R*/R3)

try out different amplitudes 7)...

Have critical parameter 7, so that

n <M
n > N«

a—1

a—0

— flat space

— black hole

experiment...

1.0

0.8

0.6

03<n.<04
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A numerical

Consider massless scalar field

O¢ = g®*V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ =nexp(—R*/R3)

try out different amplitudes 7)...

Have critical parameter 7, so that

n <M
n > N«

a—1

a—0

— flat space

— black hole

experiment...

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

n =0.31

0.30 < n, < 0.31
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A numerical

Consider massless scalar field

O¢ = g®*V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ =nexp(—R*/R3)

try out different amplitudes 7)...

Have critical parameter 7, so that

n <M
n > N«

a—1

a—0

— flat space

— black hole

experiment...

1.0

0.8

0.6

0.303 < 1, < 0.304
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A numerical experiment...

Consider massless scalar field

O¢ = g®*V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

try out different amplitudes 7)...

Have critical parameter 7, so that

n <M
n > N«

a—1

a—0

— flat space

— black hole

«

n =0.3031

1 =0.3039

[N
[=>}

0.3033 < 7, < 0.3034
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A numerical experiment...

Consider massless scalar field

1.2
D¢ = gabvavb ¢ =0 T |
' |
coupled to Einstein's equations 081 m=030331 (
I
Initial data 08 |
0.4 I
2/ p2 |
¢ =nexp(—R°/Ry) 0.2 /
. . 0.0 . <
try out different amplitudes 7... 7 =0.30339
—0.2 -
Have critical parameter 7, so that 0 2 I} 6

N < N a—1 — flat space

n>n  a—0 - black hole 0.30337 < 5, < 0.30337
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A numerical experiment...

Consider massless scalar field

O¢ = g®*V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ =nexp(—R*/R3)

try out different amplitudes 7)...

Have critical parameter 7, so that

N <1
> M«

a—1

a—0

— flat space

— black hole

«

n =0.303371

1 =0.303379

0 2 4 6

0.303375 < n, < 0.303376
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A numerical

Consider massless scalar field

O¢p = g**V,Vyp=0

coupled to Einstein's equations
Initial data

¢ =nexp(—R*/R3)

try out different amplitudes 7)...

Have critical parameter 7, so that

n <M
n > N«

a—1

a—0

— flat space

— black hole

experi ment...
7 =0.303371
0.8
0.6
<04
0.2 /&W
LN
0.0 7 =0.303379
5.8 6.0 6.2 6.4 6.6

0.303375 < n, < 0.303376




A numerical

Consider massless scalar field

O¢ = g®*V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

try out different amplitudes 7)...

Have critical parameter 7, so that

n <M
n > N«

a—1

a—0

— flat space

— black hole

experiment...

7 =0.3033751

0.0 7 =0.3033759

5.8 6.0 6.2 6.4 6.6

0.3033759 < 7, < 0.3033760
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A numerical

Consider massless scalar field

O¢ = g®*V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

try out different amplitudes 7)...

Have critical parameter 7, so that

N <1
> M«

a—1

a—0

— flat space

— black hole

experiment...

1 =0.30337591
0.8

0.6

04 ‘

0.0 7 =0.30337599

5.8 6.0 6.2 6.4 6.6
t

0.30337599 < 7, < 0.30337600
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A numerical

Consider massless scalar field

O¢ = g®*V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

try out different amplitudes 7)...

Have critical parameter 7, so that

N <1
> M«

a—1

a—0

— flat space

— black hole

experiment...

1 =0.303375991
0.8

0.6

04
0.2 ‘

0.0 7 =0.303375999

5.8 6.0 6.2 6.4 6.6

0.303375994 < 7, < 0.303375995
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A numerical experiment...

e Consider massless scalar field

O¢ = g®*V.,V,0 =0

| 1 =0.3033759941
0.6 )

coupled to Einstein's equations

® [nitial data - |
2 1 ;2 0.2 ‘\
¢ =nexp(—R"/Ry) yi
— \
e try out different amplitudes 7... 01 5 =0.3033759949
® Have critical parameter 1, so that 045 6:50 055 660

t

N < N a—1 — flat space

D> a—0  — black hole 0.3033759947 < 7, < 0.3033759948
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A numerical

Consider massless scalar field

O¢ = g®*V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

try out different amplitudes 7)...

Have critical parameter 7, so that

N <1
> M«

a—1

a—0

— flat space

— black hole

experiment...

| 1 =0.30337599471
0.6

0.2 il

009 ~0.30337500479 N

6.45 6.50 6.55 6.60
t

0.30337599472 < n, < 0.30337599473
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A numerical

Consider massless scalar field

O¢ = g®*V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

try out different amplitudes 7)...

Have critical parameter 7, so that

N <1
> M«

a—1

a—0

— flat space

— black hole

experiment...

| 1 =0.303375994721
0.6

007 ~0.303375004729

6.45 6.50 6.55 6.60
t

0.303375994729 < 7, < 0.303375994730

16/57



A numerical experiment...

Consider massless scalar field

O¢ = g®*V.,V,0 =0

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

try out different amplitudes 7)...

Have critical parameter 7, so that

n <M
n > N«

a—1

a—0

— flat space

— black hole

0.4 7 =0.303375994721

1 =0.303375994729

6.5825  6.5850  6.5875  6.5900  6.5925
t

0.303375994729 < 7, < 0.303375994730
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A numerical experiment...

Consider massless scalar field

06 = g*V.Vyo =

coupled to Einstein's equations
Initial data

¢ = nexp(—R*/R3)

try out different amplitudes 7)...

Have critical parameter 7, so that

n <M
n > N«

a—1

a—0

— flat space

— black hole

0.0

—0.1

0.3033759947297 < 1, < 0.3033759947298

1 =0.3033759947291

1 =0.3033759947299

6.5825  6.5850  6.5875
t

6.5

900

6.5925




® Look at scalar field ¢ for n — 7, at < 00 /
r=20 -02 /
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0.6
® Look at scalar field ¢ for n — 7, at 04
r=20 0.2 /
® plot as function of proper time 7 < 00
® oscillations accumulate at accumulation ~0.2 \ /
time 0.4 \V
T, ~ 1.5698 06

0.0 0.5 1.0 1.5
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Critical Solution

Look at scalar field ¢ for n — 7, at 0]
r=20
_ _ 0.4
plot as function of proper time 7 0]
oscillations accumulate at accumulation < oo
time
—0.21
T, =~ 1.5698
—0.44
plot as function of slow time o

= —log(7. — 7)
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Critical Solution

® Look at scalar field ¢ for n — 7, at o)
r=20 '
0.4
® plot as function of proper time 7 0ol
® oscillations accumulate at accumulation < oo
time
—0.2
7. ~ 1.5698
—0.41
® plot as function of slow time o)
00 25 50 75 100 125
T = —log(m — 7) R 0

Critical solution performs periodic oscillations in slow time T: discrete self-similarity
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Can we form arbitrarily small black holes?

T T T T o]
7,5 =0.376 oo
Plot mass M of forming black hole as -0 - L2
function of parameter 7 | o
® find power-law scaling = R
£ a0 f o _ I o1
M=~ (n—n.) 0]
[ o2 j L1 1
with critical exponent v ~ 0.37 I %o
—5.0 o, 1 L 1 L 1
® | ooks familiar?? -260 -220 —18.0 -14.0
In|¢o_¢(*)|

[Choptuik, 1998]
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1.030

0.12
o]
C
0.10 ¢
o]
C
0.08 o
0.06 o
0.04 g?
e
o]
0.02
0.00 —
1018 1020 102 1020 1026 1.028

n
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0.12
C
C
0.10 c
C
C

0.08
0.06 o
0.04 g?

&

O
0.02
0008
WTTOR 1020 Lo22  Lo2d Lo% Lo3s

n

1.030

Frequency (MHz)

110

68 T(K)
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Critical Phenomena

Thermodynamic Properties at the Onset of Magnetic Ordering 699

in the absence of applied fields, the field at the nucleus (and hence the resonance
frequency) being entirely due to the ordered moments. Thus nuclear magnetic reso-
nance can be used, for example, to measure the macroscopically inaccessible net
magnetization of each antiferromagnetic sublattice (see, for example, Figure 33.4).

THERMODYNAMIC PROPERTIES AT THE ONSET OF
MAGNETIC ORDERING

The critical temperature T, above which magnetic ordering vanishes is known as
the Curie temperature in ferromagnets (or ferrimagnets) and the Néel temperature
(often written Ty) in antiferromagnets. As the critical temperature is approached
from below, the spontaneous magnetization (or, in antiferromagnets, the sublattice
magnetization) drops continuously to zero. The observed magnetization just below
T, is well described by a power law.

M(T) ~(T. = TP, (33.1)

where f is typically between 0.33 and 0.37 (see Figure 33.4).
The onset of ordering is also signaled as the temperature drops to T, from above,

Frequency (MHz)

.
110

50 —

Magnetic field M in MnF; as function of temperature T
[Ashcroft & Mermin, Solid State Physics, 1976]
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Critical Phenomena in Gravitational Collapse

Consider matter model (e.g. scalar field, fluid, vacuum...)

Consider family of initial data parametrized by 1 and evolve...
Critical parameter 7, separates:

® supercritical data: form black hole
® subcritical data: don't

in vicinity of 7, observe critical phenomena:
® dimensional quantities display scaling, e.g.

M =~ (n—mn.)"

with critical exponent v: depends on matter model, but not on parametrization of initial data
® spacetime approaches unique self-similar solution
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® Solution contracts without changing
shape. ..
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® Solution contracts without changing
shape. ..
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e Solution contracts without changing
shape. ..

® . towards accumulation event at 7 = T,
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!e‘l—&m‘an!y

® Solution contracts without changing
shape. ..

® _ _towards accumulation event at 7 = T,

® radius R proportional to 7, — 7, so define
self-similar radius

R

Ty — T

§
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Self-similarity

Solution contracts without changing
shape. ..

... towards accumulation event at 7 = 7,

radius R proportional to 7, — 7, so define
self-similar radius

R

Te — T

§

dimensionless quantities are functions of ¢
only,
Z=2(5)
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Self-similarity

® Solution contracts without changing
shape. ..

® . towards accumulation event at 7 = T,

® radius R proportional to 7, — 7, so define
self-similar radius

R

Te — T

§

® dimensionless quantities are functions of £
only,
Z=2(£)

No preferred length scale, so what sets scale of forming black hole, say??
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Three phases of evolution

® Phase I:
from initial data to something close to critical solution

(how close? depends on degree of fine-tuning. . .)

® Phase Il
critical solution plus perturbation
(until perturbation becomes nonlinear)

® Phase IlI:
dispersion or collapse to black hole

Length scales set by size of the self-similar solution at transition from Phase Il to Il
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e Consider perturbations ¢ of the critical
solution
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Tx

§=Ri(r: — ) =const e Consider perturbations ¢ of the critical

\ solution
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e Consider perturbations ( of the critical
solution
® assume that only one mode is unstable

® grows at rate v in T = —log(7. — 7)

(xer =(r,—1)
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Phase Il: Perturbations of Critical Solution

Consider perturbations ( of the critical
solution

assume that only one mode is unstable
® grows at rate v in T = — log(7. — 7)

(x e =(r,—71)?

to leading order also proportional to n — 7,

¢oc(n—n)(r—7)7"
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Phase Il: Perturbations of Critical Solution

Recall:
Coc (n—mn)(r —7)7
Now...
e mode becomes nonlinear when ¢ = (, say

e length-scale R at moment when ¢ reaches ¢ given by
R oc (. — 1) oc A — )
® scaling laws, e.g.
M oc (n —n.)"

with v =1/A
[Koike et.al., 1995; Maison, 1995]
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Self-similarity can be...

Continuous versus discrete self-similarity

e continuous (CSS) (e.g. fluid)

e discrete (DSS) (e.g. scalar fields: expect

0.6

0.0

25

-1

3

10.0

“super-imposed” oscillations)

201
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Key ingredients of critical collapse

Unique critical solution, either CSS or DSS
Single unstable mode, Lyapunov exponent A
Power-law scaling with critical exponent v = 1/A
Pretty well established in spherical symmetry. ..

... but what about non-spherical cases??
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Critical collapse of gravitational waves

VOLUME 70, NUMBER 20 PHYSICAL REVIEW LETTERS 17 MAY 1993

Critical Behavior and Scaling in Vacuum Axisymmetric Gravitational Collapse

Andrew M. Abrahams(®
Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853

Charles R. Evans
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599
(Received 22 December 1992)

We report a second example of critical behavior in gravitational collapse. Collapse of axisymmetric
gravitational wave packets is computed numerically for a one-parameter family of initial data. A
black hole first appears along the sequence at a critical parameter value p*. As with spherical scalar-
field collapse, a power law is found to relate black-hole mass (the order parameter) and critical
separation: Mgy o |p — p*|°. The critical exponent is 8 ~ 0.37, remarkably close to that observed
by Choptuik. Near-critical evolutions produce echoes from the strong-field region which appear to
exhibit scaling.
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Numerous attempts to reproduce this...

Despite many attempts...

[Alcubierre et.al., 2000; Garfinkle & Duncan, 2001; Santamaria, 2006; Rinne, 2008;
Sorkin, 2011; Hilditch et.al., 2013]

. real progress in reproducing results of Abrahams & Evans only recently:
[Hilditch et.al., 2017; Ledvinka & Khirnov, 2021; Fernandez et.al., 2022]

.. will complement with new results...
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Initial data

Typically, axisymmetric initial data describing gravitational waves are set up in one of
two ways:

® Brill waves:
deform conformally related metric with seed function, solve linear (flat) elliptic
equation for conformal factor
[Brill, 1959]
® Teukolsky waves:
start with analytical wave-like solution to linearized Einstein equations, then “dress

up” to satisfy constraints
[Teukolsky, 1982; Rinne, 2008|
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Evolution

Many previous attempts used 1+log slicing,

o 051 "‘\ "
(0 — B'0)a = —a*f(a)K VA
0.01 1
. 00 25 50 75 100 125 150 17.5 200
with :
f(O{) - 2/0[ \\\ shock-avoiding
. 214 ---- 1l+log
Very successful in many cases, but can lead « |
to coordinate shocks... 01 \‘ S i e
[Alcubierre, 1997; 2003] M ‘ ‘ .
0.0 0.2 0.4 0.6 0.8

[TWB et.al., in prep.]

z
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Evolution

Consider alternatives...
® approximate maximal slicing in BSSN

formalism
[Ledvinka & Khirnov, 2018] GO A
® gauge-source functions in generalized VAl
. . 0.0 1 ~
harmonic formalism N A { NN A8 . AN —
o 0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0
[Hilditch et.al., 2017] t
® shock-avoiding slicing condition in A i’f’;;‘a"°‘d‘”g
BSSN: use « |
04 \‘ e —— S B——E R
fa) =1+ r/a? N ‘ ‘ .
0.0 0.2 0.4 0.6 0.8 1.0

z

[Alcubierre, 1997; TWB & Hilditch,
2022]

[TWB et.al., in prep.]
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Uniqueness...

Pick different families of initial data
parametrized by amplitude A

Fine-tune to black-hole threshold A,

Plot maximum attained curvature / for
subcritical data

If critical solution were unique and DSS
would expect power law

I~ |A- Al

plus periodic wiggles with unique ~

mac loglo I '™y

]

— = TA A=0 a
-g-— TA A=l
——+—— Brill A=0
- Brill A<

—log A=A

[Ledvinka & Khirnov, 2021]
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Uniqueness...

Unlike in spherically symmetric case...

® ~ depends on family
® critical solution family-dependent

e No clear evidence for “threshold”
solutions being DSS

mac loglr I '™y
= o

—s— TA A=0
—g— TA A=)
——s—— Brill A=0
- Erill A<D

[Ledvinka & Khirnov, 2021]
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Uniqueness...

Compare with gravitational collapse of T +— o
electromagnetic waves... 2 10t e T
e distinct threshold solutions for dipole " o) i i i
and quadrupole waves 1014 "
® each one only approximately DSS 0] =2
® results in distinct values of ~ : *me%
[TWB et.al,, 2019; Perez Mendoza & TWB, ] e |
2021] - e o
S
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Uniqueness

In absence of spherical symmetry...

e ... should not expect existence of unique threshold solution
® ... may have multiple centers of collapse
® ... any accumulation event may not be at center of symmetry

But: do gravitational-wave families with DSS threshold solutions exist??
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Self-similarity

Consider superposition of ingoing and
outgoing Teukolsky waves

Use BSSN code in spherical polar
coordinates

evolve with shock-avoiding slicing
condition

analyze Weyl scalars Z and J
plot in terms of self-similar coordinates

T = —log(7s — 7) E=R/(1. — 1)

[TWB et.al., in prep]
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Self-similarity

Weyl scalar Z for near-critical solution (A ~ A,) in equatorial plane

4 1.0 2.5
2 05 20¢
_ =
E =
S 15 ¢
0 = ~ 00 I
2 1.0 £
-0.5 >
- g
0.5

0.00 0.25 050 0.75 1.00 125 1.50
3

Patterns repeat with period of approximately A ~ 0.65
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Self-similarity

Weyl scalar J for near-critical solution (A ~ A,) in equatorial plane

4 1.0
2.5
2 05 20%
5
=
0 00 157
0.5 1S
-2 ’ g
0.5
-1.0
-4

0.00 0.25 0.50 075 1.00 1.25

log(]71*/°)

Patterns repeat with period of approximately A ~ 0.65
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Self-similarity

101_
® Plot curvature measures as function of
time T for near-critical solution i
. . . . . — — 1/4
e approximately periodic with period (T = 1) I
1004 (ta — 1) [TdV/10

A ~ 0.65

------- (T — ) THE,

—= (T+ = 1) ([ gdv)¥3

-15 -10 -05 00 05 10 15 20
T
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® Strong evidence of at least approximate DSS

® but is DSS exact?
® Not clear...
[Abrahams & Evans, 1994|

Self-similarity

n(sinf=1)

1)

n(sin@

0.2

0.0

-0.2

0.2

00Ff

—0.2

™

T

——T
subcritical
o~

/ !/\M//\\/f\\\'//‘ ‘E

supercritical ]

4.0 5.0 6.0
In(r)+naA
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® Plot maximum curvature attained as
function of A, — A
® approximate power law with v ~ 0.29

)“'-
2] —
10 ==
R, x
RS ”'Mu(.* Lo
x: N\
Poo0sat S0 —.
10t
—— ik
—se- ([1dV)uax/10
e JHE
100,
== ([7aV)ii
(A;« _ArD.ZB
- -
1077 1076 105 10* 103
Ax — A
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Summary

Critical phenomena in gravitational collapse
Uniqueness, self-similarity, and scaling
Well understood in spherical symmetry

Progress for vacuum gravitational waves

® likely no unique critical solution
® but there exist at least approximate DSS threshold solutions
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