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“Gravitational N-body problem”



RELAXATION PROCESSES IN SELF-GRAVITATING SYSTEMS

I Dynamical time: time scale needed by a test star to cross the stellar system

tD = 2r/σ

I Two-star relaxation time: time scale beyond which the cumulative effect on v⊥ due to subsequent two-star gravitational

encounters becomes comparable to the starting kinetic energy of a test star

trel ≈
v3

start

8πG2n(r)m2 ln Λ

Quasi-relaxed systems

e.g. star clusters N ≈ 104 ÷ 106

tD << trel < tage

105yr << 108yr < 1010yr

Two-stars relaxation processes should have
had enough time to bring them close to a ther-
modynamically relaxed state, with their distri-
bution function close to a Maxwellian.

Partially relaxed systems

e.g. galaxies N ≈ 1010 ÷ 1011

tD < tage << trel

108yr < 1010yr << 1018yr

Unable to complete relaxation during an early
phase of rapid evolution (“violent relaxation”);
should be thought of as truly collisionless stel-
lar systems.



VOCABULARY

Kinetic description
Distribution functions in phase space f = f (x, v)
Self-consistent equilibrium solution of the Vlasov-Poisson system

∂f
∂t

+ v · ∂f
∂x
− ∂f
∂v
· ∂Φ

∂x
= 0

∇2 Φ = 4πG
∫

fd3v

Phase space dependence only via isolating integrals of motion (“Jeans Theorem”).

Fluid description
Density-Potential pairs (ρ,Φ)
Solution of the moments equations, with physical closure (“equation of state”)

ρ = mn,u, σ2
ij

Well-posedness not guaranteed, inversion to DF (almost) always non-trivial.



STAR CLUSTERS AS QUASI-ISOTHERMAL SPHERES

Distribution function

fK(E) =

{
A [exp (−aE)− exp (−aE0)] if E ≤ E0

0 if E > E0

King AJ 1966

E =
1
2

(ẋ2 + ẏ2 + ż2) + Φc

Spherical symmetry: ψ(r) = a[E0 − Φc(r)], with boundary set by ψ(rt) = 0

Physical quantities as velocity moments, e.g. density

ρ(r) =

∫
fK(E)d3v = Âeψγ

(
5
2
, ψ(r)

)
= Âρ̂(ψ(r))

Self-consistency of mean-field potential via Poisson eq. ∇2Φc(r) = 4πGρ(r)

Initial value problem; one parameter (Ψ), two physical scales (A, a)
in dimensionless form, with r̂ = r/r0 and r0 = [9/(4πGρ0a)]1/2

∇2ψ = −9
ρ̂(ψ)

ρ̂(Ψ)
ψ(0) = Ψ
ψ′(0) = 0



A NEW ASTRONOMICAL LANDSCAPE: Gaia reveals our own Milky Way



THE NEW PHASE SPACE COMPLEXITY OF OLD STELLAR SYSTEMS

Star clusters no longer
just simple “balls of stars”:

they rotate, have velocity anisotropy ...
Katz et al. A&A 2022 (Gaia DR3)

When a GC rotation curve
was a heresy!

Bianchini, Varri et al. A&A 2012



Rigidly rotating equilibria



RIGIDLY ROTATING EQUILIBRIA: Definitions Varri & Bertin 2012 A&A

If total angular momentum is non-vanishing, in the derivation of
Maxwell-Boltzmann distribution function: E→ H = E− ωJz,
where ω represents the (rigid) angular velocity of the system.

Landau & Lifchitz Stat Phys 1967

Distribution function:

f r
K(H) =

{
A [exp (−aH)− exp (−aH0)] if H ≤ H0

0 if H > H0

H =
1
2

(ẋ2 + ẏ2 + ż2) + Φcen + ΦC Φcen(r) = −1
2
ω2(x2 + y2)

ψ(r) = a{H0 − [Φc(r) + Φcen(r)]}

Concentration ↔ Ψ ≡ ψ(0) Rotation strength ↔ χ ≡ ω2

4πGρ0
Two domains separated by the boundary surface of the configuration, defined by
ψ(r) = 0, which is unknown a priori.

∇̂2ψ = −9
[
ρ̂(ψ)

ρ̂(Ψ)
− 2χ

]
for ψ > 0 (Poisson)

∇̂2ψ = 18χ for ψ < 0 (Laplace)

Elliptic PDE in a free boundary problem



RIGIDLY ROTATING EQUILIBRIA: Perturbation approach Varri & Bertin 2008 ApJ

Rotation effect = (small) perturbation acting on the configuration described by
the spherical (King 1966) models: χ� 1

ψ(̂r;χ) =
∞∑

k=0

1
k!
ψk(̂r)χk

Expansion of the general term of the series ψk(̂r) in Legendre polynomials
→ one-dimensional (radial) initial-value problems.

This perturbation problem is singular!
The convergence radius of the asymptotic series vanishes r̂→ r̂tr, i.e. the
validity of the expansion breaks down when ψ0 = O(χ).
I Introduction of an intermediate region (boundary layer)
I Asymptotic matching à la Van Dyke for (ψ(int), ψ(lay)) and (ψ(lay), ψ(ext))

Van Dyke, Perturbation Methods in Fluid Mechanics, 1975

Inspiration: rigidly rotating polytropes Chandrasekhar MNRAS 1933, ... Smith Ap&SS 1975

Full explicit solution to 2 orders in χ.

By induction, the k-th order solution ψ(k) contains only the l = 0, 2, .., 2k
polynomials.



RIGIDLY ROTATING EQUILIBRIA: Parameter space Varri & Bertin A&A 2012

Ask me about stability! t = T/|W|
(i.e., total ordered kinetic energy)
t(e) ∼ χ(e) ∼ 2

15 e2 for e << 1
Maclaurin sequence of ellipsoids (dashed)



RIGIDLY ROTATING EQUILIBRIA: Properties Varri & Bertin A&A 2012

Deformation shaped by
the centrifugal potential:
“elongation”on (x̂, ŷ)

e = [1− (b̂/â)2]1/2

â ≥ b̂

e0 = O(χ1/2)
Nontrivial!

Quadrupole moments
calculated analytically!

Q̂zz/Q̂xx = −2
Q̂yy/Q̂xx = 1

for every χ and Ψ

Ψ = 1, ..., 10 χ = χcr(Ψ)
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Equilibria with central black holes



EQUILIBRIA WITH BH: Boundary conditions Bonsor, Varri & Vanneste, almost sub.

Again, start from spherical (King 1966) equilibria

Introduce black hole via “hydrostatic equilibrium” condition Huntley & Saslow ApJ 1975

1
ρ

dP
dr

= −GMBH

r2 − 4πG
r2

∫ r

rmin

s2ρ(s)ds

New initial value problem

∇2ψ = −9
ρ̂(ψ)

ρ̂(Ψ)
ψ(ε) = Ψ

ψ′(ε) = − 9µ
4πε2

Three dimensionless parameters (and two physical scales)
I Ψ concentration, or rather depth of the central potential well
I µ mass of the central black hole
I ε inner radius



EQUILIBRIA WITH BH: Main properties Bonsor, Varri & Vanneste, almost sub.

Numerical solution of initial
value problem is trivial

Substantial central slopes in
both density and velocity
dispersion

For given Ψ and ε, a maximum
value µmax exists, set by

a0 = Ψ− 9µ
4πε

> 0

Beyond a critical value µ > µc,
the equilibria change their
structure!
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EQUILIBRIA WITH BH: Three nested asymptotic regimes

rt boundary radius; MC = −µ−
4π
9

r2
t

dψ
dr

∣∣∣∣
r=rt

mass of the star cluster

an constant of integration at order n of the expansion

Different regions in each regime
I Region I: rescale r1 = r̂/ε and expand ψ as a series to investigate the central behaviour

I Subsequent regions when the previous one breaks down, pushing the solution further away from the centre



EQUILIBRIA WITH BH: Regime I: a0 = O(1)

Rescale radial variable, expand in series of ε, and solve initial value problems
at each order

ψ(I)(r1) = ψ
(I)
0 (r1) + εψ

(I)
1 (r1) + ε2ψ

(I)
2 (r1) + · · · .

Region I

ψ(I)(r1) =

(
Ψ− 9µ

4πε

)
︸ ︷︷ ︸

a0

+
9µ
4πε

1
r1

+ ε2ψ
(I)
2 (r1)

where
∇2

r1ψ
(I)
2 (r1) = −9

ρ̂(ψ)

ρ̂(Ψ)

ψ
(I)
2 (1) = 0

ψ
(I)
2
′(1) = 0

Leading order solution dominated by the black hole, the stellar component
acts as a ’tracer’ at the next order

Large radius approximation of ψ(I)
2 can be obtained, when the solution

becomes invalid



EQUILIBRIA WITH BH: Regime I: a0 = O(1)

Region II

∇2
rψ

(II) = −9
ρ̂(ψ)

ρ̂(Ψ)
ψ(II)(0) = limr1→∞ ψ

(I) = a0

ψ(II)′(0) = limr1→∞ ψ
(I)′ = 0

Boundary condition set via
asymptotic matching with the
Region I solution

Recognisable as a classical King
model with a reduced central
concentration of a0



EQUILIBRIA WITH BH: Regime II: a0 = O(ε2), a2 = O(1)

Region I: significant change in the form of the leading order

ψ(I) =
Ψ

r1
+ ε2ψ

(I)
2

such that
∇2

r1ψ
(I)
2 (r1) = −9

ρ̂(Ψ/r1)

ρ̂(Ψ)

ψ
(I)
2 (1) = 0

ψ
(I)
2
′(1) = ε−2a0

Constant of integration associated with the above problem

a2 = ε−2a0 −
9

ρ̂(Ψ)

∫ ∞
1

sρ̂
(

Ψ

s

)
ds

which may be positive or negative
as opposed to a0 , which had to be strictly positive



EQUILIBRIA WITH BH: Regime II: a0 = O(ε2), a2 = O(1)

Condition a2 = 0 provides a good criterion for the transition between the two
types of equilibria

Regime II asymptotics offers a good description on both sides of the transition



EQUILIBRIA WITH BH: Regime III: a0 = O(ε2), a2 = O(ε2)

Region I: same approach as
before, but 4th order solution is
required to match properly

Region II: requires further scaling
r2 = ε4r1 and ψ(II) = ε4φ

Initial value problem

∇2
r2ψ

(II) = −κφ5/2

where κ =
5

18 ˆρ(Ψ)

from γ (5/2, ψ) ≈ 2
5ψ

5/2

Boundary condition
φ→ α+ F(Ψ, r2) as r2 → 0
with α = a4 + 40κ2Ψ4 ln(ε)

µc =
4πε

9

(
Ψ + ε2C(Ψ) + ε4 ln(ε)40κ2Ψ4 − ε4 [αc −D(Ψ)]

)



EQUILIBRIA WITH BH: Entropy

S = −
∫

f (x, v) ln(f (x, v))d3vd3x.

Regime I: the equilibria behave
like King 1966 models with
central concentration a0

For a0 = O(1), the classic
oscillatory behaviour is
recovered

Rapid increase in entropy for
small values of a0
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EQUILIBRIA WITH BH: “Caloric curve”

β ≡ aG2M4/3
C (8
√

2πAe−aE0 )2/3 =
81 · 32/3

16π2

M̂4/3
C

ρ̂(Ψ)2/3

E ≡ − Etot

G2M7/3
C (8
√

2πAe−aE0 )2/3
= − 2π

38/3

ρ̂(Ψ)2/3Û
M̂7/3

C

Classic “cold spiral” for large Ψ,
which denotes gravothermal
catastrophe

New branch for small a0!

Regime III asymptotics offers
the correct scaling around the
new phase transition! (1st order
microcanonical)



WHY ALL THIS?

Small, “stellar-mass”
black holes exist!

Gravitational waves
February 2016

“Intermediate-mass”
black holes??

Large, “supermassive”
black holes exist!

Event Horizon Telescope
April 2019, May 2022



YET, NO DETECTION!



PARTING THOUGHTS

The dynamics of (small) stellar systems has much to say about some of the
biggest questions in contemporary astrophysics. Ask me more.

“Phase space complexity” essential to exploit new-generation astronomical
data. Rigidly rotating equilibria as a minimal example. Ask me more.

Quasi-isothermal spheres with central black holes proposed.
New phase transition identified, promising observables.
Self-consistent treatment of the mean-field potential is key!

Kinetic theory of self-gravitating systems (and plasmas) still is a goldmine.
KITP program in Summer 2024


