Rotating stellar systems and their black holes

Anna Lisa Varri

UKRI Future Leaders Fellow School of Physics & Astronomy ∩ School of Mathematics University of Edinburgh

with Sam Bonsor and Jacques Vanneste

Star cluster (47 Tucanae)

Galaxy (Andromeda)

$$\ddot{\mathbf{r}}_i = -G\sum_{j=1, i\neq j}^{j=N} m_j \frac{\mathbf{r}_i - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|^3}$$

"Gravitational N-body problem"

RELAXATION PROCESSES IN SELF-GRAVITATING SYSTEMS

Dynamical time: time scale needed by a test star to cross the stellar system

$$t_D = 2r/\sigma$$

Two-star relaxation time: time scale beyond which the cumulative effect on v_⊥ due to subsequent two-star gravitational encounters becomes comparable to the starting kinetic energy of a test star

$$t_{rel} pprox rac{v_{start}^3}{8\pi G^2 n(r) m^2 \ln \Lambda}$$

Quasi-relaxed systems		Partially relaxed systems	
e.g. star clusters	$N pprox 10^4 \div 10^6$	e.g. galaxies	$N\approx 10^{10}\div 10^{11}$
$t_D << t_{rel} < t_{age}$		$t_D < t_{age} << t_{rel}$	
$10^5 yr << 10^8 yr < 10^{10} yr$		$10^8 yr < 10^{10} yr << 10^{18} yr$	
Two-stars relaxation processes should have		Unable to complete relaxation during an early phase of rapid evolution ("violent relaxation"):	

had enough time to bring them close to a thermodynamically relaxed state, with their distribution function close to a Maxwellian. Unable to complete relaxation during an early phase of rapid evolution ("violent relaxation"); should be thought of as truly collisionless stellar systems.

Kinetic description

Distribution functions in phase space $f = f(\mathbf{x}, \mathbf{v})$ Self-consistent equilibrium solution of the Vlasov-Poisson system

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} - \frac{\partial f}{\partial \mathbf{v}} \cdot \frac{\partial \Phi}{\partial \mathbf{x}} = 0$$
$$\nabla^2 \Phi = 4\pi G \int f d^3 \mathbf{v}$$

Phase space dependence only via isolating integrals of motion ("Jeans Theorem").

Fluid description

Density-Potential pairs (ρ, Φ)

Solution of the moments equations, with physical closure ("equation of state")

$$\rho = mn, \mathbf{u}, \sigma_{ij}^2$$

Well-posedness not guaranteed, inversion to DF (almost) always non-trivial.

STAR CLUSTERS AS QUASI-ISOTHERMAL SPHERES

Distribution function

$$f_{K}(E) = \begin{cases} A \left[\exp\left(-aE\right) - \exp\left(-aE_{0}\right) \right] & \text{if } E \le E_{0} \\ 0 & \text{if } E > E_{0} \end{cases}$$

$$E = \frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \Phi_c$$

King AJ 1966

- Spherical symmetry: $\psi(r) = a[E_0 \Phi_c(r)]$, with boundary set by $\psi(r_t) = 0$
- Physical quantities as velocity moments, e.g. density

$$\rho(r) = \int f_{K}(E)d^{3}v = \hat{A}e^{\psi}\gamma\left(\frac{5}{2},\psi(r)\right) = \hat{A}\hat{\rho}(\psi(r))$$

- Self-consistency of mean-field potential via Poisson eq. $\nabla^2 \Phi_c(r) = 4\pi G \rho(r)$
- Initial value problem; one parameter (Ψ), two physical scales (A, a) in dimensionless form, with r̂ = r/r₀ and r₀ = [9/(4πGρ₀a)]^{1/2}

$$\nabla^2 \psi = -9 \frac{\hat{\rho}(\psi)}{\hat{\rho}(\Psi)}$$
$$\psi(0) = \Psi$$
$$\psi'(0) = 0$$

A NEW ASTRONOMICAL LANDSCAPE: Gaia reveals our own Milky Way

Star clusters no longer *just* simple "balls of stars": they rotate, have velocity anisotropy ...

Katz et al. A&A 2022 (Gaia DR3)

When a GC rotation curve was a heresy! Bianchini, Varri et al. A&A 2012

Rigidly rotating equilibria

RIGIDLY ROTATING EQUILIBRIA: Definitions

If total angular momentum is non-vanishing, in the derivation of Maxwell-Boltzmann distribution function: $E \rightarrow H = E - \omega J_z$, where ω represents the (rigid) angular velocity of the system.

Landau & Lifchitz Stat Phys 1967

Distribution function:

$$f_{K}^{r}(H) = \begin{cases} A \left[\exp \left(-aH \right) - \exp \left(-aH_{0} \right) \right] & \text{if } H \leq H_{0} \\ 0 & \text{if } H > H_{0} \end{cases}$$

$$H = \frac{1}{2}(\dot{x}^{2} + \dot{y}^{2} + \dot{z}^{2}) + \Phi_{cen} + \Phi_{C} \qquad \Phi_{cen}(\mathbf{r}) = -\frac{1}{2}\omega^{2}(x^{2} + y^{2})$$

$$\psi(\mathbf{r}) = a\{H_{0} - [\Phi_{c}(\mathbf{r}) + \Phi_{cen}(\mathbf{r})]\}$$

Concentration $\leftrightarrow \Psi \equiv \psi(\mathbf{0})$ Rotation strength $\leftrightarrow \chi \equiv \frac{\omega^2}{4\pi G\rho_0}$ Two domains separated by the boundary surface of the configuration, defined by $\psi(r) = 0$, which is unknown *a priori*.

$$\begin{split} \hat{\nabla}^2 \psi &= -9 \left[\frac{\hat{\rho}(\psi)}{\hat{\rho}(\Psi)} - 2\chi \right] \quad \text{for} \quad \psi > 0 \quad \text{(Poisson)} \\ \hat{\nabla}^2 \psi &= 18\chi \qquad \qquad \text{for} \quad \psi < 0 \quad \text{(Laplace)} \end{split}$$

Elliptic PDE in a free boundary problem

RIGIDLY ROTATING EQUILIBRIA: Perturbation approach Varri & Bertin 2008 ApJ

■ Rotation effect = (small) perturbation acting on the configuration described by the spherical (King 1966) models: $\chi \ll 1$

$$\psi(\hat{\mathbf{r}};\chi) = \sum_{k=0}^{\infty} \frac{1}{k!} \psi_k(\hat{\mathbf{r}}) \, \chi^k$$

- Expansion of the general term of the series $\psi_k(\hat{\mathbf{r}})$ in Legendre polynomials \rightarrow one-dimensional (radial) initial-value problems.
- This perturbation problem is singular! The convergence radius of the asymptotic series vanishes $\hat{r} \rightarrow \hat{r}_{tr}$, i.e. the validity of the expansion breaks down when $\psi_0 = O(\chi)$.
 - Introduction of an intermediate region (boundary layer)
 - ► Asymptotic matching à la Van Dyke for $(\psi^{(int)}, \psi^{(lay)})$ and $(\psi^{(lay)}, \psi^{(ext)})$

Van Dyke, Perturbation Methods in Fluid Mechanics, 1975

- Inspiration: rigidly rotating polytropes
- Full explicit solution to 2 orders in χ .
- **By** *induction*, the *k*-th order solution $\psi^{(k)}$ contains only the l = 0, 2, ..., 2k polynomials.

Chandrasekhar MNRAS 1933, ... Smith Ap&SS 1975

Ask me about stability!

$$\begin{split} t &= T/|W|\\ \text{(i.e., total ordered kinetic energy)}\\ t(e) &\sim \chi(e) \sim \frac{2}{15}e^2 \text{ for } e << 1\\ \text{Maclaurin sequence of ellipsoids (dashed)} \end{split}$$

Deformation shaped by the centrifugal potential: "elongation" on (\hat{x}, \hat{y})

$$e = [1 - (\hat{b}/\hat{a})^2]^{1/2}$$
$$\hat{a} \ge \hat{b}$$
$$e_0 = \mathcal{O}(\chi^{1/2})$$
Nontrivial!

Quadrupole moments calculated analytically!

$$\hat{Q}_{zz}/\hat{Q}_{xx} = -2$$
$$\hat{Q}_{yy}/\hat{Q}_{xx} = 1$$
for every χ and Ψ

$$\Psi = 1, ..., 10 \qquad \chi = \chi_{cr}(\Psi)$$

Equilibria with central black holes

- Again, start from spherical (King 1966) equilibria
- Introduce black hole via "hydrostatic equilibrium" condition Huntley & Saslow ApJ 1975

$$\frac{1}{\rho}\frac{dP}{dr} = -\frac{GM_{BH}}{r^2} - \frac{4\pi G}{r^2}\int_{r_{min}}^r s^2\rho(s)ds$$

New initial value problem

$$\begin{split} \nabla^2 \psi &= -9 \frac{\hat{\rho}(\psi)}{\hat{\rho}(\Psi)} \\ \psi(\epsilon) &= \Psi \\ \psi'(\epsilon) &= -\frac{9\mu}{4\pi\epsilon^2} \end{split}$$

- Three dimensionless parameters (and two physical scales)
 - Ψ concentration, or rather depth of the central potential well
 - μ mass of the central black hole
 - \blacktriangleright e inner radius

EQUILIBRIA WITH BH: Main properties

- Numerical solution of initial value problem is trivial
- Substantial central slopes in both density and velocity dispersion
- For given Ψ and ϵ, a maximum value μ_{max} exists, set by

$$a_0 = \Psi - \frac{9\mu}{4\pi\epsilon} > 0$$

Beyond a critical value μ > μ_c, the equilibria change their structure!

EQUILIBRIA WITH BH: Main properties

- Numerical solution of initial value problem is trivial
- Substantial central slopes in both density and velocity dispersion
- For given Ψ and ϵ, a maximum value μ_{max} exists, set by

$$a_0 = \Psi - \frac{9\mu}{4\pi\epsilon} > 0$$

Beyond a critical value μ > μ_c, the equilibria change their structure!

EQUILIBRIA WITH BH: Three nested asymptotic regimes

- r_t boundary radius; $M_C = -\mu \frac{4\pi}{9}r_t^2 \left.\frac{\mathrm{d}\psi}{\mathrm{d}r}\right|_{r=r_t}$ mass of the star cluster
- *a_n* constant of integration at order *n* of the expansion
- Different regions in each regime
 - ▶ Region I: rescale r₁ = r̂/ε and expand ψ as a series to investigate the central behaviour
 - Subsequent regions when the previous one breaks down, pushing the solution further away from the centre

■ Rescale radial variable, expand in series of *ε*, and solve initial value problems at each order

$$\psi^{(I)}(r_1) = \psi_0^{(I)}(r_1) + \epsilon \psi_1^{(I)}(r_1) + \epsilon^2 \psi_2^{(I)}(r_1) + \cdots$$

Region I

$$\psi^{(l)}(r_1) = \underbrace{\left(\Psi - \frac{9\mu}{4\pi\epsilon}\right)}_{a_0} + \frac{9\mu}{4\pi\epsilon} \frac{1}{r_1} + \epsilon^2 \psi_2^{(l)}(r_1)$$

where

$$\begin{split} \nabla^2_{r_1}\psi^{(I)}_2(r_1) &= -9\frac{\hat{\rho}(\psi)}{\hat{\rho}(\Psi)}\\ \psi^{(I)}_2(1) &= 0\\ \psi^{(I)\prime}_2(1) &= 0 \end{split}$$

- Leading order solution dominated by the black hole, the stellar component acts as a 'tracer' at the next order
- Large radius approximation of $\psi_2^{(l)}$ can be obtained, when the solution becomes invalid

Region II

$$\begin{aligned} \nabla_r^2 \psi^{(II)} &= -9 \frac{\hat{\rho}(\psi)}{\hat{\rho}(\Psi)} \\ \psi^{(II)}(0) &= \lim_{r_1 \to \infty} \psi^{(I)} = a_0 \\ \psi^{(II)}(0) &= \lim_{r_1 \to \infty} \psi^{(I)} = 0 \end{aligned}$$

- Boundary condition set via asymptotic matching with the Region I solution
- Recognisable as a classical King model with a reduced central concentration of *a*₀

Equilibria with BH: Regime II: $a_0 = \mathcal{O}(\epsilon^2)$, $a_2 = \mathcal{O}(1)$

Region I: significant change in the form of the leading order

$$\psi^{(I)} = \frac{\Psi}{r_1} + \epsilon^2 \psi_2^{(I)}$$

such that

$$\begin{aligned} \nabla_{r_1}^2 \psi_2^{(l)}(r_1) &= -9 \frac{\hat{\rho}(\Psi/r_1)}{\hat{\rho}(\Psi)} \\ \psi_2^{(l)}(1) &= 0 \\ \psi_2^{(l)}{}'(1) &= \epsilon^{-2} a_0 \end{aligned}$$

Constant of integration associated with the above problem

$$a_2 = \epsilon^{-2} a_0 - \frac{9}{\hat{\rho}(\Psi)} \int_1^\infty s \hat{\rho}\left(\frac{\Psi}{s}\right) \mathrm{d}s$$

which may be positive or negative

as opposed to a_0 , which had to be strictly positive

EQUILIBRIA WITH BH: Regime II: $a_0 = \mathcal{O}(\epsilon^2)$, $a_2 = \mathcal{O}(1)$

- Condition *a*₂ = 0 provides a good criterion for the transition between the two types of equilibria
- Regime II asymptotics offers a good description on both sides of the transition

EQUILIBRIA WITH BH: Regime III: $a_0 = \mathcal{O}(\epsilon^2)$, $a_2 = \mathcal{O}(\epsilon^2)$

- Region I: same approach as before, but 4th order solution is required to match properly
- Region II: requires further scaling $r_2 = \epsilon^4 r_1$ and $\psi^{(II)} = \epsilon^4 \phi$
- Initial value problem
 - $\nabla_{r_2}^2 \psi^{(II)} = -\kappa \phi^{5/2}$

where
$$\kappa = \frac{5}{18\rho(\hat{\Psi})}$$

from $\gamma (5/2, \psi) \approx \frac{2}{5}\psi^{5/2}$

Boundary condition $\phi \rightarrow \alpha + F(\Psi, r_2) \text{ as } r_2 \rightarrow 0$ with $\alpha = a_4 + 40\kappa^2 \Psi^4 \ln(\epsilon)$

$$\mu_{c} = \frac{4\pi\epsilon}{9} \left(\Psi + \epsilon^{2} C(\Psi) + \epsilon^{4} \ln(\epsilon) 40 \kappa^{2} \Psi^{4} - \epsilon^{4} \left[\alpha_{c} - D(\Psi) \right] \right)$$

EQUILIBRIA WITH BH: Entropy

$$S = -\int f(\mathbf{x}, \mathbf{v}) \ln(f(\mathbf{x}, \mathbf{v})) \mathrm{d}^3 \mathbf{v} \mathrm{d}^3 \mathbf{x}.$$

- Regime I: the equilibria behave like King 1966 models with central concentration a₀
- For *a*⁰ = *O*(1), the classic oscillatory behaviour is recovered
- Rapid increase in entropy for small values of *a*₀

EQUILIBRIA WITH BH: Entropy

$$S = -\int f(\boldsymbol{x}, \boldsymbol{v}) \ln(f(\boldsymbol{x}, \boldsymbol{v})) \mathrm{d}^3 \boldsymbol{v} \mathrm{d}^3 \boldsymbol{x}.$$

- Regime I: the equilibria behave like King 1966 models with central concentration a₀
- For *a*⁰ = *O*(1), the classic oscillatory behaviour is recovered
- Rapid increase in entropy for small values of *a*₀

EQUILIBRIA WITH BH: "Caloric curve"

$$\beta \equiv aG^2 M_C^{4/3} (8\sqrt{2}\pi A e^{-aE_0})^{2/3} = \frac{81 \cdot 3^{2/3}}{16\pi^2} \frac{\hat{M}_C^{4/3}}{\hat{\rho}(\Psi)^{2/3}}$$
$$\mathcal{E} \equiv -\frac{E_{tot}}{G^2 M_C^{7/3} (8\sqrt{2}\pi A e^{-aE_0})^{2/3}} = -\frac{2\pi}{3^{8/3}} \frac{\hat{\rho}(\Psi)^{2/3} \hat{U}}{\hat{M}_C^{7/3}}$$

- Classic "cold spiral" for large Ψ, which denotes gravothermal catastrophe
- New branch for small *a*₀!
- Regime III asymptotics offers the correct scaling around the new phase transition! (1st order microcanonical)

Small, "stellar-mass" black holes exist!

Gravitational waves February 2016 "Intermediate-mass" black holes??

Large, "supermassive" black holes exist!

Event Horizon Telescope April 2019, May 2022

Yet, no detection!

PARTING THOUGHTS

- The dynamics of (small) stellar systems has much to say about some of the biggest questions in contemporary astrophysics. Ask me more.
- "Phase space complexity" essential to exploit new-generation astronomical data. Rigidly rotating equilibria as a minimal example. Ask me more.
- Quasi-isothermal spheres with central black holes proposed. New phase transition identified, promising observables. Self-consistent treatment of the mean-field potential is key!
- Kinetic theory of self-gravitating systems (and plasmas) still is a goldmine. *KITP program in Summer* 2024

