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Star cluster Galaxy
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“Gravitational N-body problem”



RELAXATION PROCESSES IN SELF-GRAVITATING SYSTEMS

» Dynamical time: time scale needed by a test star to cross the stellar system
tD = 21’/ o

» Two-star relaxation time: time scale beyond which the cumulative effect on v | due to subsequent two-star gravitational

encounters becomes comparable to the starting kinetic energy of a test star
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Quasi-relaxed systems Partially relaxed systems
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e.g. star clusters N ~10* +10° e.g. galaxies N = 10" + 10"
tp << tra < fage tp < tage <<t
10°yr << 10%yr < 10"yr 10%yr < 10"yr << 10"yr

Two-stars relaxation processes should have Unable to complete relaxation during an early
had enough time to bring them close to a ther-  phase of rapid evolution (“violent relaxation”);
modynamically relaxed state, with their distri- ~ should be thought of as truly collisionless stel-
bution function close to a Maxwellian. lar systems.



VOCABULARY

m Kinetic description
Distribution functions in phase space f = f(x, v)
Self-consistent equilibrium solution of the Vlasov-Poisson system
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V2 ® = 4nG / v
Phase space dependence only via isolating integrals of motion (“Jeans Theorem”).

m Fluid description
Density-Potential pairs (p, ®)
Solution of the moments equations, with physical closure (“equation of state”)

2
p = mn,u, aij

Well-posedness not guaranteed, inversion to DF (almost) always non-trivial.



STAR CLUSTERS AS QUASI-ISOTHERMAL SPHERES

m Distribution function

f(E) = { g[exp (—aE) — exp (—akEp)] ﬁg § 53

1 .2 . . King AJ 1966
E=(k +9 +2) + @
m Spherical symmetry: ¢(r) = a[Eqg — ®c(r)], with boundary set by ¢ (r¢) = 0

m Physical quantities as velocity moments, e.g. density
. 5 .
o) = [ feBrt'o = et (F.0(n)) = Aptwir)

m Self-consistency of mean-field potential via Poisson eq. V>®.(r) = 4wGp(r)

m Initial value problem; one parameter (¥), two physical scales (A, a)

in dimensionless form, with # = r/rgand rg = [9/ (477Gpoa)]1/ 2
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A NEW ASTRONOMICAL LANDSCAPE: Gaia reveals our own Milky Way

©  Globular cluster
o Dwarf galaxy




THE NEW PHASE SPACE COMPLEXITY OF OLD STELLAR SYSTEMS

47 Tuc - Line-of-sight rotation profile
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Star clusters no longer
just simple “balls of stars”: When a GC rotation curve
they rotate, have velocity anisotropy ... was a heresy!

Katz et al. A&A 2022 (Gaia DR3) Bianchini, Varri et al. A&A 2012



Rigidly rotating equilibria



RIGIDLY ROTATING EQUILIBRIA: Definitions Varri & Bertin 2012 A&A

m If total angular momentum is non-vanishing, in the derivation of
Maxwell-Boltzmann distribution function: E — H = E — w],
where w represents the (rigid) angular velocity of the system.
Landau & Lifchitz Stat Phys 1967
m Distribution function:

s = { P Cem e Cenl s

H= (x2 + yz + Zz) + Peen + q)C Deen (I') = 7%w2(x2 + ]/2)
P(r) = af{Ho — [Dc(r) + Peen(r)]}

N[ =

wZ

Concentration <+ W =1(0) Rotationstrength <+ x =

m Two domains separated by the boundary surface of the configuration, defined by
¥ (r) = 0, which is unknown a priori.

@21/} =—9 {g((;/}l; — 24 for ¢ >0 (Poisson)

Vi) = 18x for ¢ <0 (Laplace)

Elliptic PDE in a free boundary problem



RIGIDLY ROTATING EQUILIBRIA: Perturbation approach  vami & sertin 2005 apy

m Rotation effect = (small) perturbation acting on the configuration described by
the spherical (King 1966) models: x <« 1

BEX) = ()X
k=0 "

m Expansion of the general term of the series ¢, (f) in Legendre polynomials
— one-dimensional (radial) initial-value problems.

m This perturbation problem is singular!
The convergence radius of the asymptotic series vanishes 7 — 7y, i.e. the
validity of the expansion breaks down when 1y = O(x).
» Introduction of an intermediate region (boundary layer)
» Asymptotic matching a la Van Dyke for (90 (™)) and (1) 4(=)

Van Dyke, Perturbation Methods in Fluid Mechanics, 1975
m Inspiration: rigidly rotating polytropes Chandrasekhar MNRAS 1933, .. Smith Ap&SS 1975
m Full explicit solution to 2 orders in x.

m By induction, the k-th order solution »® contains only the! =0,2,..,2k
polynomials.



RIGIDLY ROTATING EQUILIBRIA: Parameter space Varri & Bertin A&A 2012
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Ask me about stability! t=T/|W|
(i.e., total ordered kinetic energy)

t(e) ~ x(e) ~ %62 fore <<'1
Maclaurin sequence of ellipsoids (dashed)



RIGIDLY ROTATING EQUILIBRIA: Properties Varri & Bertin A&A 2012

Deformation shaped by
the centrifugal potential:
“elongation”on (&, /)

e=[1— (b/a)2"/2
a>b

e = O(x'"?)
Nontrivial!

Quadrupole moments
calculated analytically!

sz/Qxx =2

ny/ Qxx =1
for every x and ¥

Log(p/po)

v =1,..,10 X = Xer(T)




Equilibria with central black holes



EQUILIBRIA WITH BH: Boundary conditions

Bonsor, Varri & Vanneste, almost sub.

m Again, start from spherical (King 1966) equilibria

m Introduce black hole via “hydrostatic equilibrium” condition Huntiey & sastow Apy 1975

1ap_

pdr

m New initial value problem

GMpy  4nG (7

a2 | szp(s)ds
2y P
VW)
YP(e) =V 0
ey 7K
vi(e) = 4re?

m Three dimensionless parameters (and two physical scales)
» W concentration, or rather depth of the central potential well
» 1 mass of the central black hole

» ¢ inner radius



EQUILIBRIA WITH BH: Main properties

m Numerical solution of initial
value problem is trivial

m Substantial central slopes in
both density and velocity
dispersion

m For given ¥ and ¢, a maximum
value pumax exists, set by
9
apg =V — 2B >0
4re
m Beyond a critical value po > p,
the equilibria change their
structure!

Bonsor, Varri & Vanneste, almost sub.
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EQUILIBRIA WITH BH: Main properties

m Numerical solution of initial
value problem is trivial

m Substantial central slopes in
both density and velocity
dispersion

m For given ¥ and ¢, a maximum
value pumax exists, set by
9
apg =V — 2B >0
4re
m Beyond a critical value po > p,
the equilibria change their
structure!

Bonsor, Varri & Vanneste, almost sub.
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EQUILIBRIA WITH BH: Three nested asymptotic regimes

(¥, e) = (5,0.1)
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m 7; boundary radius; Mc = —p — —rtz —w mass of the star cluster

9 dr

r=r¢
m g, constant of integration at order 7 of the expansion
m Different regions in each regime

» Region I: rescale r; = #/e and expand v as a series to investigate the central behaviour

» Subsequent regions when the previous one breaks down, pushing the solution further away from the centre



EQUILIBRIA WITH BH: Regime I: a0 = O(1)

Rescale radial variable, expand in series of ¢, and solve initial value problems
at each order

(1) = i (1) + " (n) + Evs” () +

Region 1
D () — o\ 9 1
v (7’1)—( 47re) +47I'61’ te w ( )
————
a0

where )

\Y& (D _9/3

) =)

sz (1)=0

v (1) =0
Leading order solution dominated by the black hole, the stellar component

acts as a 'tracer’ at the next order

Large radius approximation of %(1) can be obtained, when the solution
becomes invalid



EQUILIBRIA WITH BH: Regime I: a0 = O(1)

m Region II

V3¢(”> — 9 /3(1/})

p(Y)
P (0) = limy, 00 P = ag
P’ (0) = limy, 00 ¥ =0

m Boundary condition set via
asymptotic matching with the
Region I solution

m Recognisable as a classical King
model with a reduced central
concentration of ag

(P, 1t/ ftrmar- €) = (5,0.5,0.1)

| —— Numerical solution

Region I solution
Region II solution
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EQUILIBRIA WITH BH: Regime II: ag = O(¢?), ay

m Region I: significant change in the form of the leading order
PP = rg +
1

such that 5T /)
V2 () = —9 =L
21 (1) =0
(1) = ¢ %ay

m Constant of integration associated with the above problem

a9 e (v
BT p@)/l S"(s)‘“

which may be positive or negative

as opposed to ap, which had to be strictly positive



EQUILIBRIA WITH BH: Regime II:
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m Condition a; = 0 provides a good criterion for the transition between the two
types of equilibria

m Regime IT asymptotics offers a good description on both sides of the transition



EQUILIBRIA WITH BH: Regime III: ag = O(€?), a2 = O(€?)

m Region I: same approach as
before, but 4th order solution is
required to match properly

m Region II: requires further scaling
r = etrpand v = e*¢ 204

m Initial value problem

V%Z'l/J(H) _ _H¢5/2 =
1.04

where k = ———
18p(¥)

from y (5/2, ) ~ 2y°/?

m Boundary condition . ‘ . ‘ . ‘ ‘ ‘
¢ — a+F(¥,rn)asr —0 -0 20 0 200 40 60 80 100
with o = ay 4 40x>¥* In(e) "

e = 23 (W + EC(W) + ¢ In(40K* — & o — D(W)])



EQUILIBRIA WITH BH: Entropy

S = —/f(x, v) In(f (x, v))d*vd’x.
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EQUILIBRIA WITH BH: Entropy

S = —/f(x, v) In(f (x, v))d*vd’x.

(T,e)=(5,0.1)
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EQUILIBRIA WITH BH: “Caloric curve”
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WHY ALL THIS?

“Intermediate-mass”

black holes??
Small, “stellar-mass” Large, “supermassive”
black holes exist! black holes exist!
Gravitational waves Event Horizon Telescope

February 2016 April 2019, May 2022



YET, NO DETECTION!

Correlating Black Hole Mass
to Stellar System Mass
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PARTING THOUGHTS

m The dynamics of (small) stellar systems has much to say about some of the
biggest questions in contemporary astrophysics. Ask me more.

m “Phase space complexity” essential to exploit new-generation astronomical
data. Rigidly rotating equilibria as a minimal example. Ask me more.

m Quasi-isothermal spheres with central black holes proposed.
New phase transition identified, promising observables.
Self-consistent treatment of the mean-field potential is key!

m Kinetic theory of self-gravitating systems (and plasmas) still is a goldmine.
KITP program in Summer 2024




