# Gravitational wave and EM signatures of binary BHs with circumbinary gas

Zoltán Haiman Columbia University

**Gravity Seminar** 

NBIA, Copenhagen

16 May, 2023

# **Copenhagen and me**

#### NORDITA NEWS 1997/5

#### **October 1, 1997**

#### **NORDITA FELLOWSHIPS 1998/99**

Information about NORDITA Fellowships for the academic year 1998-99 is attached. Completed application forms and letters of recommendation should arrive at NORDITA not later than November 15, 1997. NOTE THAT THE DEADLINE IS EARLIER THAN IN PREVIOUS YEARS. Please ensure that potential candidates, especially ones at institutes in other countries, receive this information.

#### **OVERVIEW OF FUTURE NORDITA AND OTHER CONFERENCES**

| Title / Date / Place                                                                         | Contact Person                                                 | Fax / Email / www                                                                      |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Nordita's 40th Anniversary<br>Nordita, Copenhagen.<br>3-4 November 1997.                     |                                                                | +45 - 353 89157 (fax)<br>nordita@nordita.dk                                            |
| Cosmology: from COBE<br>to Galaxy Formation.<br>Nordita, Copenhagen.<br>2 - 5 December 1997. | A. Kashlinsky<br>Nordita and<br>Goddard Space<br>Flight Center | +45 - 353 89157 (fax)<br>cosmology@nordita.dk<br>http://www.nordita.dk/Conf/cosmology/ |



Outline

Introduction: mergers of SMBHs in galactic nuclei

 observational background, motivation

- 2. Theory: binary accretion
  - bright variable emission from binary

#### 3. Observations: do we have to wait for GW detections?

- SMBH binary candidates in quasar surveys
- forecasts for LSST & LISA era

### 4. Stellar-mass BH binaries: mergers in AGN disks?

- BH binaries form in or captured by nuclear gas disks
- Bright EM emission outshining AGN

## **Multi-band Gravitational Waves**



### **Multi-band Gravitational Waves**





### → GW sources at / close to merger (LISA, PTA)



→ GW sources at / close to merger (LISA, PTA)

→ EM sources earlier on (time-domain surveys e.g. LSST)



→ GW sources at / close to merger (LISA, PTA)

→ EM sources earlier on (time-domain surveys e.g. LSST)

how do we find them?

Arp 271 (credit: ESO)

Science from Multi-Messenger Astrophysics Benefits of combining GWs and EM detections

#### (1) Astronomy and astrophysics

— accretion physics: EM emission with known BH parameters

- *accretion physics*: distortions to waveforms (Derdzinski + 2020, 2021)
- quasar/galaxy (co)evolution: BH vs host galaxy relations

#### (2) Fundamental physics & cosmology

- Hubble diagrams from standard sirens (Schutz 1986 + ...)
- $d_L(z)$  from GWs + photons: test of non-GR gravity (Deffayet & Menou 2007)
- delay between arrival time of photons and gravitons: extra dimensions, graviton mass ( $\gamma m_0 c^2 = hf$ ; Kocsis et al. 2008)
- (3) EM counterparts can also help with GW detection
  - known EM source position helps break GW parameter degeneracies
  - EM counterpart can increase confidence of marginal GW detections

Outline

- **1. Introduction: mergers of SMBHs in galactic nuclei** 
  - observational background, motivation
- 2. Theory: binary accretionbright variable emission from binary
- 3. Observations: do we have to wait for GW detections?
  - SMBH binary candidates in quasar surveys
  - forecasts for LSST & LISA era
- 4. Stellar-mass BH binaries: mergers in AGN disks?
  - BH binaries form in or captured by nuclear gas disks
  - Bright EM emission outshining AGN

# **Binary quasars**

Gas cools and forms a compact (~ sub-pc) nuclear accretion disk



 $\rightarrow$  What if second black hole is present ?  $\leftarrow$ 





**Menou (2009)** 







# Equal-mass, circular binary

Westernacher-Schneider et al. (2022)



Sailfish; GPU-enabled 2D hydro code, Cartesian coö's mass ratio (q), eccentricity (e), temperature (M)

Ryan Westernacher -Schneider



# **Key Features of Binary Accretion**

### **Central cavity:**

- Lack of stable orbits within ~twice the binary separation
- Density suppressed by factor of  $\sim 100$

### Lopsided cavity wall with lump:

- circumbinary disk strongly lopsided (nonlinear instability)
- dense lump appears at cavity wall, modulating accretion

### **Streamers:**

- enter cavity wall via strong shocks, extend into tidal region of BHs
- fuel accretion is via gravity and shocks --- not viscosity/MRI !

### Minidisks:

- fueled by streamers -- net accretion rate matches that of single BH
- strong shocks periodically appear and disappear



#### Signature I: binary quasars are periodic **Thermal emission**; optical and IR Circular Eccentric $\alpha = 0.1 \ e = 0$ $\alpha = 0.1 \ e = 0.45$ infrared optical $\mathcal{M} = 21$ colder $\begin{array}{cccc} \text{luminosity} & [10^{42} \text{ erg/s}] \\ 1 & & & & \\ 1 & & & \\ 1 & & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & &$ $\mathcal{M} = 11$ warmer time [orbits] time [orbits]

### **Binary quasars are periodic**

Circular

Eccentric



# **Periodicity from Minidisks**

Westernacher-Schneider et al. (2023, in prep)

With Sailfish; resolved lopsided minidisks with retrograde precession



### **Impact of mass ratio**

0.3 < q < 1







Sawtooth/bursty variability, on **orbital time at cavity wall** 

more sinusoidal variability, on **orbital timescale** 

Accretion rate not suppressed – similar to bright quasar → periodic variability down to mass ratio of ~0.05

# Periodicity from Doppler boost (EM "chirp")

**ZH (2017)** 

#### LISA binary

X-ray emission from quasars from few  $R_g$ Minidisk  $\rightarrow$  X-ray corona bound to single BH Doppler effect modulates brightness at O(v/c) ~0.1 <u>Wide (P ~ yr) binary</u> optical: ~ few 100  $R_g$ minidisk=quasar disk v/c~ 0.01

 $\rightarrow$  dominates over hydro-variability for q  $\leq$  0.05  $\leftarrow$ 



### **Periodic binary self-lensing**

#### Interstellar (2014)



#### Event Horizon Telescope (EHT) 2017, 2022



## **Binary self-lensing**

D'Orazio & Di Stefano (2016) Jordy Davelaar & ZH (2022a,b – PRL, PRD)



Illustration: APS, Carin Cain



### **Recurring Self-Lensing Spikes**

Davelaar & ZH (2022a,b)

note:  $\theta_e/\theta_{bin} = (2a_{bin}/R_s)^{-1/2}$ 

compact (d=100  $R_a$ ) edge-on binary i= 90°



- flares visible within  $\pm 3-30^{\circ}$  of edge-on
- shadow visible if
   ±1-10° of edge-on
- week-long flares in periodic quasars
- 10x higher chance for LISA binaries (already compact)

→ 100s detectable by Vera Rubin Observatory (LSST, 2024+)

# Signature II: Hard spectrum

#### Tang et al. (2017)



Thermal emission extends to hard X-rays from inner regions around each BH



### Signature III: Post-merger afterglow





Anisotropic GW emission causes BH to recoil and lose few % of its mass

Orbit crossings– spiral caustics Lippai, Frei, ZH (2008) Penoyre & ZH (2018)

Outward-propagating shocks Corrales, ZH & MacFadyen (2010) Rossi et al. (2009, 2010) Megevand et al. (2010) O'Neill et al. (2009)

→ afterglow on weeks/months timescale, unique evolution

# Outline

- **1.** Introduction: mergers of SMBHs in galactic nuclei
  - observational background, motivation
- 2. Theory: binary accretionbright variable emission from binary
- 3. Observations: do we have to wait for GW detections?
  - SMBH binary candidates in quasar surveys
  - forecasts for LSST & LISA era
- 4. Stellar-mass BH binaries: mergers in AGN disks?
  - BH binaries form in or captured by nuclear gas disks
  - Bright EM emission outshining AGN

### **Searching for Periodic Quasars**

 $t_{GW}(P \sim yr) \sim t_{visc} \sim 10^5 yr$ 

inspiral time:

quasar lifetime: t<sub>oso</sub>~10<sup>8</sup> yr

### expected period

- Catalina Real-Time Transient Graham et al. (2015) 111 candidates with periods 1 250,000 quasars to V~20, 9-
- Palomar Transient Factory (P<sup>-</sup> Charisi et al. (2016) 33 candidates with periods 60 36,000 quasars R~22, 5 ye
- Zwicky Transient Factory (PTF Chen et al. (2022)
   127 candidates with periods 5 143,000 quasars r~20, 5 ye



17.9



### **Searching for Periodic Quasars**

 $t_{GW}(P \sim yr) \sim t_{visc} \sim 10^5 yr$ 

inspiral time:

### expected period

- Catalina Real-Time Transient Graham et al. (2015) 111 candidates with periods 250,000 quasars to V~20, 9-
- Palomar Transient Factory (P Charisi et al. (2016) 33 candidates with periods 60 36,000 quasars R~22, 5 ye
- Zwicky Transient Factory (PTF Chen et al. (2022) 127 candidates with periods 5 143,000 quasars r~20, 5 ye

how do we know they'r

17.9



**Doppler-modulation is chromatic** 

PG1302-102 D'Orazio, ZH, Schiminovich (2015)

Bright z=0.3 quasar  $M_{bh}$ =10<sup>8.3</sup>-10<sup>9.4</sup> M<sub>☉</sub> a=0.01 pc (280 R<sub>S</sub>) ±14% variability with 5.16 ± 0.2 yr period (in 250,000 quasars)

#### Incl. follow-up Swift data (Xin, Charisi, ZH et al. 2020)



Chromaticity:  $\Delta F_v/F_v = (3-\alpha) (v_{II}/c)$  $\alpha = dlnF_v/dlnv$ 

**Optical** variability vs. **UV** variability consistent with Doppler boost

### Search for Recurring Self-Lensing Spikes

**KIC 11606854, a.k.a. "Spikey"** Betty Hu, Dan D'Orazio, ZH et al. (2020) Rare case of a quasar in the Kepler field (z=0.92), with symmetric spike





Chengcheng Xin

# **Binaries in LSST**

#### Xin & ZH (2021)



### How many do we expect in LSST?

#### Xin & ZH (2021)



Extrapolate quasar LF

Assume fraction f<sub>bin</sub> of quasars are binaries:

 $N_{bin} (P_{orb}) =$ 

[ $t_{res}$  (P<sub>orb</sub>) /  $t_{Q}$ ] f<sub>bin</sub> N<sub>Q</sub>

Side-steps modeling of cosmology/mergers

### LISA "verification" binaries in LSST

Xin & Haiman (2021)



\* O(100) binaries with P  $\lesssim$  1 day: Redshift z ~ 1-2 Mass ~10<sup>5</sup> - 10<sup>6</sup> M<sub> $\odot$ </sub> \* Many more at longer periods but still well in GW inspiral regime \* Can identify them in archival data after LISA detection

### EM signatures near merger

Luke Krauth et al. (2023)



Follow GW inspiral ( $10^6 M_{\odot}$ ) for last ~month before merger (~400 orbits) Follow post-merger disk including recoil and mass-loss of remnant



### **EM chirp follows GW chirp**



cf. earlier work by Tang et al. 2018

### **Pre-merger localization - ouch**

#### Mangiagli et al. 2020



## **Disappearing black holes!**



Binary suddenly <u>vani</u>shes in X-rays

#### But stays in optical UV and infrared

Can catch this with Athena (use LSST or its archival data)

No immediate effect of mass-loss or recoil

# **Disappearing minidisks and streams**



# **Summary**

- 1. Binaries quasars are periodic: hydro  $(q \sim 1)$  and Doppler  $(q \leq 0.05)$
- 2. Some may have been already detected: chromatic periodicity
- 3. Additional recurring self-lensing flares present (esp. if Doppler)
  BH shadows detectable as further "dips" on top of lensing flares
- 4. O(100) rare ultra-compact binaries in LSST  $\rightarrow$  LISA sources
- 5. Binary disappears in X-ray but not opt/IR in last ~20 orbits (~day)

# Outline

- **1. Introduction: mergers of SMBHs in galactic nuclei** 
  - observational background, motivation
- 2. Theory: binary accretionbright variable emission from binary

### 3. Observations: do we have to wait for GW detections?

- SMBH binary candidates in quasar surveys
- forecasts for LSST & LISA era
- 4. Stellar-mass BH binaries: mergers in AGN disks?
  - BH binaries form in or captured by nuclear gas disks
  - Bright EM emission outshining AGN











# N-body dynamics in dense clusters

equal massrandom birth spins

# Stellar-mass BHs in quasar disks

Gas cools and forms a compact (~ sub-pc) nuclear accretion disk



 $\rightarrow$  What if second black hole is present ?  $\leftarrow$ 



Hiromichi Tagawa

# "1D" N-body simulation

### SMBH, gas disk, stars+BHs in 3D cluster, in 2D disk

#### Tagawa, ZH, Kocsis (2020a)

- BH Star **Dynamical binary** formation **Gas-capture binary** formation **GW** capture Migration SMBH **Binary-single** interaction **AGN disk Disk capture** Binarycircumbinary disk interaction **Binary disruption**
- I. Binary formation (2-body, 3-body)
- II. Binary disruption (binary-single scattering)
- III. Binary evolution (circumbinary gas, GWs, binary-single scattering)
- IV. Radial migration (Type I/II torque)

### **Merger characteristics**

\* Most binaries in AGN form via dissipative gas capture

\* Most LIGO events probably not from AGN disks, but properties of some recent events naturally expected:

- Unequal mass ✓
   → different generations
- **2. High mass**  $\checkmark$   $\rightarrow$  2g+ (and some accretion)
- High spin ✓
   → due to prior merger, correlates with mass
- 4. Misaligned spin ( $\chi_{eff} \sim 0$  but  $\chi_p > 0$ )  $\checkmark$   $\rightarrow$  scattering with 3<sup>rd</sup> body
- 5. Eccentricity
  - → scattering with 3<sup>rd</sup> body with GWs (if coplanar)
  - → GW capture in inner region (if rapid migration to <10<sup>-3</sup> pc)



Stan de Laurentiis

### **Gas Capture Model**

De Laurentiis, Epstein-Martin & ZH 2023

3-body problem with gas dynamical friction, REBOUND



Marguerite E.-M.

$$F_{DF} = \frac{-4\pi G^2 M^2 \rho}{v_M^3} f(\frac{v_M}{c_s}) \boldsymbol{v_M}$$

$$f(x) = \begin{cases} 0.5 \ln(\frac{1+x}{1-x}) - x & 0 < x < 1\\ 0.5 \ln(x^2 - 1) + \ln(\lambda_{\rm C}) & x > 1. \end{cases}$$





### **Selected Examples of Encounters**

#### **De Laurentiis, Epstein-Martin & ZH 2023**

 $\rightarrow$  impact parameter  $\rightarrow$ 



### Fate vs Impact parameter

#### wide and smooth bands of capture with effective cross section $b \sim O(R_{Hill})$

cf. fractal structure of frictionless "Jacobi capture"; Boekholt+2022





Connar Rowan

## Gas Capture – 3d simulations Rowan, Boekholt, Kocsis & ZH (2023) SPH (Phantom), 3D, global disk annulus



#### **Parameters:**

 $M_{\text{SMBH}} = 4 \times 10^6 M_{\odot}$  $\dot{M}_{\text{inflow}} = 0.1 \, \dot{M}_{\text{edd}}$  $H/R = 0.005 \, (\alpha = 0.1)$ 

$$m_1 = m_2 = 25 M_{\odot}$$
  

$$R_{1,2} \sim 0.01 \text{pc} (P_{\text{orb}} \sim 30 \text{ yr})$$
  

$$\Delta R_{sim} = 20 \text{ r}_{\text{Hill}} \quad \Delta \Theta = 20^{\circ}$$

 $N = 2.5 \times 10^7$  particles  $r_{sink} = 0.01 r_{Hill}$  $r_{soft} = 0.01 r_{sink}$ 

3 disk mass (23, 110, 570  $M_{\odot}$ ) × 5 impact para (2.5-3.5  $r_{Hill}$ ) = 15 sims



# Gas Capture – Summary of Fiducial Sims Rowan, Boekholt, Kocsis & ZH (2023)



**Optical counterpart to GW190521 (?)** Claim of coincident flare in ZTF

#### Graham et al. 2020



 $\sim 10^5 L_{Edd}$  for  $\sim 100 M_{\odot} BH$ 

#### AGN:

- $z = 0.438 (\sim 2-3 \text{ Gpc})$
- $M_{\rm SMBH} = (1-10) \times 10^8 \,{\rm M}_{\odot}$

• 
$$L_{\rm bol}/L_{\rm Edd} = 0.02 - 0.23$$

#### Flare:

- $t_{\text{duration}} \sim 28 \text{ days}$
- $t_{\text{delay}} \sim 18 \text{ days}$
- $L_{\rm opt} \sim 10^{45} \, {\rm erg/s}$
- g, r band : ~ 480, 650 nm

# Gamma-ray counterpart to GW150914 (??)

### **Claim of coincident flare in Fermi GBM:**

- **GW150914** (1<sup>st</sup> event,  $M_{\rm rem} \sim 62 M_{\odot}$ )
- $L_{\rm max} \sim 2 \times 10^{49} \text{ erg/s} (10 \text{ keV-10 MeV})$
- $t_{\rm duration} \sim 1 \ {\rm s}$
- $t_{delay} \sim 0.4$  s from GW150914
- $E \sim 2 \times 10^{49} \text{ erg}$
- $d_{\rm L} \sim 410 \; {\rm Mpc}$
- association significance: 2.9 σ
   (prob. of high S/N event within 30 s)





#### **Controversy:**

**Connaughton+18** 

Criticism: background value, detectors (Greiner+16)

Rebuttal: binning, sky location, complex geometry, used detectors (Connaughton+18)

Jets and cocoons from BHs in AGN disks  $\dot{M}_{BHL} \gg \dot{M}_{edd} \rightarrow spinning BH \rightarrow jet (cf. GRB) \rightarrow L \gg L_{edd}$ 

Tagawa, Kimura, ZH, Perna Tanaka, Bartos (2022)



# **Episodic accretion / jet activity**

*t*<sub>res</sub>

*t*<sub>cons</sub>



sBH

Time-averaged accretion rate is reduced by a factor  $\gtrsim 10$ 

# **EM emission**

Disk parameters ( $H_{AGN}$ ,  $\rho_{AGN}$ ) as a function of distance from SMBH follow from  $M_{SMBH}$ ,  $\dot{M}_{SMBH}$ ,  $\alpha_{eff}$  (Thompson+05) BH accretion:  $\dot{m}_{BHL} \rightarrow$  jet power:  $L_{iet} \sim a_{BH}^2 \dot{m}_{BHL} c^2$ 



- 1. thermal shock-breakout emission
- 2. non-thermal emission from shocks: synchrotron, inverse Compton
- 3. high-energy emission from internal shocks



### **Examples: LIGO EM counterpart claims**

#### Tagawa et al. 2023

#### Match luminosity, color, delay time, and duration



### **EM emission – full spectrum**





- Some LIGO events' properties naturally produced in AGN disks:
   → large mass & mass ratio, nonzero eccentricity, unusual spins
- Also natural environment for EM emission related to jets
   → hot shocked cocoon: thermal + non-thermal emission
- 3. Optical/IR and gamma-ray flares like those claimed for LIGO
- 4. Internal shocks  $\rightarrow$  high-energy  $\nu$ 's, cosmic rays, MeV  $\gamma$ -rays

# The End