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Research Interests

My past/current research in GWs falls into three categories.

e Astrophysical environments of binaries [This Talk]
® DPhysics of gravity: fundamental constants, exotic ultradense stars, lensing

® Analysis techniques: fast parameter estimation, eccentricity detection and interpretation

I would love to talk about these! Please reach out: aditya@utoronto.ca
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Gravitational Waves

So far, we have detected gravitational waves
(GWs) from compact binary coalescences
(CBCs) containing black holes and neutron
stars.

GW signals from these have a very
characteristic ~ “chirping” feature: their
frequency and amplitude increases with time.

Typical detection range:

o binary black holes (BBH) — z=05
(~3000 Mpc)

o binary neutron stars (BNS) — 2z=0.05
(~200 Mpc).
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Gravitational Waves: The Present
Masses in the Stellar Graveyard
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The LIGO-Virgo-KAGR A Collaboration (LVK) has reported a total of 90 detections of compact binary coalescences



Gravitational Waves: The Future

In the future, more sensitive
detectors (Cosmic Explorer, Einstein
Telescope) hence more distance
reach and hence more events.

~ 0.5 million BBH events per year.

Plus also detectors in the:
o Millihertz regime (LISA)
o Decihertz regime (DECIGO,
LGWA, LILA)
o Kilohertz regime (NEMO)
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Uncertain Measuements
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Combining Uncertain Measurements
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Combining Uncertain Measurements
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Combining Uncertain Measurements

Compare these ensemble properties to astrophysical 10°
expectations and answer questions like:
A
e  Where do binaries form and grow? s
o  Galactic field? 'a
o  Globular clusters? O,
o AGN? gj
g 29? it A S T S Frannrenmrnritrennnnnsness
o  Something else??: (47 2 GWTC'3 (Power Law + Peak) ;
=== Star Formation (Arbitrary Norm.)
e What can these binaries tell us about 000 095 050 075 100 195 150
z

o  Stellar collapse details?
o Equation of state of neutron stars?

Measurements of ensemble properties

and many more!
[LVK+, arXiv:2111.0363]



Inferring host galaxy properties of LIGO-Virgo-KAGRA'’s black holes
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ABSTRACT

Observations of gravitational waves from binary black hole (BBH) mergers have measured the redshift
evolution of the BBH merger rate. The number density of galaxies in the Universe evolves differently
with redshift based on their physical properties, such as their stellar masses and star formation rates.
In this work we show that the measured population-level redshift distribution of BBHs sheds light
on the properties of their probable host galaxies. We first assume that the hosts of BBHs can be
described by a mixture model of galaxies weighted by stellar mass or star formation rate, and find that
we can place upper limits on the fraction of mergers coming from a stellar mass weighted sample of
galaxies. We then constrain parameters of a physically motivated power-law delay-time distribution
using GWTC-3 data, and self-consistently track galaxies in the UNIVERSEMACHINE simulations with
this delay time model to infer the probable host galaxies of BBHs over a range of redshifts. We
find that the inferred host galaxy distribution at redshift z = 0.21 has a median star formation rate
~ 0.9 Mpyr~! and a median stellar mass of ~ 1.9 x 10'° M. We also provide distributions for the
mean stellar age, halo mass, halo radius, peculiar velocity, and large scale bias associated with the
host galaxies, as well as their absolute magnitudes in the B- and Ks-bands. Our results can be used
to design optimal electromagnetic follow-up strategies for BBHs, and also to aid the measurement of
cosmological parameters using the statistical dark siren method.



Connection between GWs and their hosts

Galaxies Compact-object
preferentially binaries
formin preferentially
massive form
— —l
dark matter in certain
halos, making types of galaxies

depending on
the formation

them biased
tracers of dark

matter. channel.

Adapted from Wechsler and Tinker (2018)
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Inferring Host Galaxies: Basic Idea

Binary black holes form and evolve in galaxies.
o  Star forming galaxies? Massive galaxies? Something else?
o Poor localization — No association of host galaxies on a per-event level

The ensemble number density of binary black holes should track the number density of galaxies, as a
function of redshift.

So, the redshift evolution of BBHs measured from GWTC-3 data should already shed light on BBH host
galaxies.
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Galaxies evolve differently based on their properties

A set of star forming galaxies will evolve consistently
with cosmic star formation rate density: (1 + z)”.
o  Will also refer to such galaxies as SFR-weighted
galaxies.

On the other hand, galaxies weighted by their stellar
mass decrease with increasing redshift:
o  Lesser stars per unit volume at higher redshift.

10° FE e

Simple Mixture model: stellar mass weighted
galaxies + SFR weighted galaxies
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Galaxies evolve differently based on their properties

Assume simple mixture model of SM-weighted and SFR

weighted galaxies:

(@)

Typical assumption e.g. in short GRB/FRB
literature and (also Adhikari+ 2020 in context of
GWs)

Compare with R(z) from GWTC-3

O

Purely stellar mass weighted host galaxies are
ruled out.

Their maximum contribution to the total
population is 43% [90% CLI.

10° FE e

Simple Mixture model: stellar mass weighted
galaxies + SFR weighted galaxies
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https://arxiv.org/abs/2001.01025

Delay Time

Binaries that we see in LVK might have formed much earlier
as compared to the redshifts we infer.

Delay Time '

Time taken to shrink
the binary by GW '
emission and other
processes

Binary merges to
form larger object
(say around z=1)

Binaries form (say
around z=4)

Redshift

15



Delay Time
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Physically-motivated prescription: galaxies+delay time

e Delay time distributions can be constrained from
GWTC-3 data

R(t) = /OOO dtp Rs(t+tp) p(tp)

e Use power law delay time model parametrized by:
©  Minimum time delay tmin

o  Power law exponent alpha

e Constrain tmin < 2.23 Gyr, alpha <-1.55 [90% CL].
Consistent with other recent works [Fishbach and Van
Son 2023, Turbang+ 2023]

e tH™ [Gyr]

Vijavkumar+ 2023



https://arxiv.org/abs/2307.15824
https://arxiv.org/abs/2307.15824
https://arxiv.org/abs/2310.17625

[llustration: Host galaxies at small and large delay times
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Physically-motivated prescription: galaxies+delay time

e UniverseMachine simulations of galaxy evolution
o Models the star formation and mass assembly history as a function of redshift
o Instead of using first principles physics, populates galaxies into dark matter halos such that it is
consistent with a large set of observations.

e Feed the delay time inference into UniverseMachine, and track every galaxy’s star formation history
with a delay time to calculate merger rate in each galaxy:

R (20) = /dtD R7™(t(20) +tp) x p(tp)
Same as the equation in the previous slide, written on a per galaxy level.

e Plot histograms of galaxies weighted by the merger rate.
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Median inferred host galaxy distribution
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B-band and Ks-band magnitudes at z=0.21

Calculate fluxes/magnitudes in the B-band and Ks-band.
These bands are used in dark siren analyses as proxies for SFR and stellar mass respectively.
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Summary

Redshift evolution of the BBH merger rate inferred from GWTC-3 already sheds light on probable
host galaxies of BBHs.
o  Purely stellar mass sample of galaxies is ruled out

We develop a framework to combine delay time distribution constraints and galaxy star formation
histories to constrain the set of host galaxies.

Could be used to “weight” galaxies for measurement of Hubble constant using GW sources.

Can be trivially extended to BNSs, NSBHs, astronomical transients/objects if they have a measured
redshift evolution of rate/number density.
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Waltzing Binaries: Probing the Line-of-sight Acceleration of Merging Compact Objects
with Gravitational Waves
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Abstract

The line-of-sight acceleration of a compact binary coalescence (CBC) event would modulate the shape of the
gravitational waves (GWs) it produces with respect to the corresponding nonaccelerated CBC. Such modulations
could be indicative of its astrophysical environment. We investigate the prospects of detecting this acceleration in
future observing runs of the LIGO-Virgo-KAGRA network, as well as in next-generation (XG) detectors and the
proposed DECIGO. We place the first observational constraints on this acceleration for putative binary neutron star
mergers GW170817 and GW190425. We find no evidence of line-of-sight acceleration in these events at 90%
confidence. Prospective constraints for the fifth observing run of the LIGO at A+ sensitivity suggest that
accelerations for typical binary neutron stars (BNSs) could be constramed with a precision of a/c~ 10~ Is7h,
assuming a signal-to-noise ratio of 10. These improve to a/c ~ 10~ [s_l] in XG detectors, and a/c ~ 10~ 50 [s_l]
in DECIGO. We also interpret these constraints in the context of mergers around supermassive black holes.
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What does a GW signal from a merging binary look like?
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What does a GW signal from a merging binary look like?

GW170817: a binary neutron star
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Frequency

What does a GW signal from a merging binary look like?

We can measure this curve well, specifically the slope of this curve. From this, we can
measure a mass'scale (“chirp mass”)

Mc:k( f

f11/3

Credit: GW170817 spectrogram, LIGO-Virgo
Collaboration

Time
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What if the binary’s centre-of-mass is moving?

If the binary has a velocity v, GWs will get redshifted (let’s ignore cosmic expansion for now)

(V)
Rdop — E
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What if the binary’s centre-of-mass is moving?

If the binary has a velocity v, GWs will get redshifted (let’s ignore cosmic expansion for now)

(V)
Rdop — E
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What if the binary’s centre-of-mass is moving?

If the binary has a velocity v, GWs will get redshifted (let’s ignore cosmic expansion for now)

v
Zdop — E
[t - /
f= 1+ Zdop f= (1+ Zdop)2

MC — Mc<1 s Zdop)
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What if the binary’s centre-of-mass is accelerating?

Mg — Ml + Zdop)

e Constant velocity (i.e. constant redshift) — degenerate with the component masses, and
hence cannot be measured.

31



What if the binary’s centre-of-mass is accelerating?

Mc —7 Mc(l =+ Zdop)

Constant velocity (i.e. constant redshift) — degenerate with the component masses, and
hence cannot be measured.

Accelerating binary — Time-varying velocity — Time-varying chirpmass — Measurable!
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What if the binary’s centre-of-mass is accelerating?

M. — M (14 zaop)

Constant velocity (i.e. constant redshift) — degenerate with the component masses, and
hence cannot be measured.

Accelerating binary — Time-varying velocity — Time-varying chirpmass — Measurable!

Specifically, for a GW170817-like signal, if
al a
— >10" = —>3
¢ 9

We can measure the acceleration.

33



What if the binary’s centre-of-mass is accelerating?
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What if the binary’s centre-of-mass is accelerating?

non-accelerating
-~ ==~ accelerating

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
Time (s)

-0.7

-0.8

35



How to accelerate a binary?

Accelerated motion (eg. circular motion) is
i astrophysics.

common in
Binaries near SMBHs, in globular clusters,
or even in the galactic field have some
acceleration.
o Where binaries form and grow is an
open question. Measurements of
acceleration can help with this!

/

\

/z?s\

B G MsvBH

r2

\

a

BBH/BNS

7’

\

/

|

36



How to accelerate a binary?

Typical values of acceleration

e Galactic Field: a/c~1017 - 10 5!
e Globular Clusters: a/c ~ 10¢ --1012 s
e Near SMBHs: a/c ~ 1010 --10° s’

BBH/BNS
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Measurement from GW1/0817 and GW190425

We first estimate the acceleration from the
BNS events GW170817 and GW190425,
ideal for this measurement since they are
low mass events.

Both measurements are consistent with
Zero acceleration.

TT T T | T T T T
1 Gwi170817
[ GW190425

—1.0 —-0.5 0.0
. a/c [s7?
Vijavkumar+ 2023
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Measurement from GW1/0817 and GW190425

M r\ 2
_ —12 BH —1
a/c=4.65 x 10 <—1010M@> (_1pc> cosf s

Using this measurement, we constrain the distance of GW170817 from the centre of its
galaxy to: r > 12.1 AU
o This uses the fact that we know the mass of the SMBH nearest to GW170817.

o However, this constraint is rather weak, since we also know the actual distance of
GW170817 wrt the SMBH (~2 kpc).

On the other hand, since we do not know the mass of GW190425’s host galaxy, we
place a SMBH-mass dependent constraint on its distance from the galactic centre

r> 7.2 x (Mgu/10Mg)Y/2 AU

39



Measurability of acceleration
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At SNR=10 using OS5, Cosmic Explorer and Einstein Telescope from left to right.
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Measurability of acceleration in decihertz detectors

DECIGO, which is a proposed space-based
deci-hertz detector (as opposed to ~10 Hz

15—+
for  LIGO-like  detectors)  promises
spectacular constraints on the acceleration. [ g2 T
@,
<
~
=
<

1 H 10~
1 i 10—16
20 40 60

m, [Mg]  Vijaykumar+ 2023
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a/c [s7']
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Accelerations in a Milky Way like galaxy. While Einstein Telescope can probe distances ~1000
Schwarzschild radii, DECIGO can probe distance right out to ~5 kpc from the centre.
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Prospects

Accelerations in globular clusters, derived from the Cluster Monte Carlo simulations [Kremer+ 2020]
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About 12% of all events coming from globular clusters will have detectable accelerations in DECIGO.
[ Tiwari, Vijaykumar+ 2023, arXiv:2307.00930]
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Prospects (Extremely Preliminary)

Measuring higher time-derivatives of the acceleration (jerk, snap,...) can inform the mass of the environment as
well as the distance from the centre of the environment (and maybe also mass profiles!).
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Summary

Acceleration can be measured with GW events. Best constraints come from low-mass
events.

Acceleration measured with GW170817 and GW190425 are consistent with zero.

Future detectors will measure acceleration with very high precision, thus probing

formation environments of binaries.

Future Work: can we measure jerk, snap, crackle, pop etc.? :)
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Thanks for Listening!

Get in Touch!

Website: adivijaykumar.github.io

Email: aditya@utoronto.ca
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Effect on GW signal

Formally, acceleration affects the waveform at -4 Post Newtonian (PN) order (leading
contribution).

o0 The coefficient only depends on  (mass) * (acceleration / speed of light).

A(f) 25 <GM) <ﬁ) w13 1_|_z7:ak01;]
k=0

T 6553672 \ 3 c

o Since v ~ f 3 the effect is prominent at lower frequencies, and binaries with more

low-frequency content (ie. low mass) would give best measurements of acceleration.

Question: How measurable is this acceleration, and what can we say about the
environments of these mergers with the measurement?
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