Gravitational waves from a particle physics perspective

Jan Steinhoff

Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Potsdam, Germany

Niels Bohr International Academy, Copenhagen, November 29, 2022

Gravity: from Galileo and Newton to Einstein

Newton's theory of gravity:
 things fall down due to a gravitational force

universality of free fall

London Science Museum

Gravity: from Galileo and Newton to Einstein

Newton's theory of gravity:
 things fall down due to a gravitational force

universality of free fall

London Science Museum

Einstein's theory of gravity

a.k.a. general relativity a.k.a. our best theory of gravity:

- ▶ free fall = force-free motion
- no gravitational force
- Space & time are curved → gravitational waves!

International Space Station, nasa.gov

Gravitational waves

gravitational waves: small ripples in the fabric of spacetime

best source: black hole/neutron star binaries

ightarrow chirp signal

GW150914 (binary black hole), ligo.caltech.edu

Applications of gravitational waves

Frequency of gravitational waves

sensitive frequency range

 $f\sim 40-400 {
m Hz}$

3rd Kepler: $r^3(2\pi f)^2 = GM$

GW150914: binary black hole

$$\rightarrow \frac{v}{c} \sim \frac{GM}{c^2 r} \sim 0.12 \dots 0.5$$

need numerical simulations

Frequency of gravitational waves

sensitive frequency range

 $f\sim 40-400 {
m Hz}$

3rd Kepler: $r^3(2\pi f)^2 = GM$

GW150914: binary black hole

$$ightarrow rac{v}{c} \sim rac{GM}{c^2 r} \sim 0.12 \dots 0.5$$

need numerical simulations

GW170817: binary neutron star

$$ightarrow rac{v}{c} \sim rac{GM}{c^2 r} \sim 0.01 \dots 0.07$$

weak field and slow motion (post-Newtonian) approximation

Methods for predicting gravitational waves and their regimes

[Khalil, Buonanno, JS, Vines, arXiv:2204.05047]

Possible future

"Ready for what lies ahead?" [M. Pürrer, C.-J. Haster, arXiv:1912.100]

 \rightarrow need better analytic (and numeric) predictions soon! on top of that, include more physical effects (eccentricity+precession, tides, ...)

Look at the relativistic binary problem from a quantum perspective!

J. A. Wheeler

nytimes.com

"The Hamilton-Jacobi description of motion: natural because ratified by the quantum principle" Box 25.3 in [*Gravitation*, Misner, Thorne, Wheeler (MTW)] Particle physics perspective: scattering black holes are natural!

- classical scattering: scattering angle χ (more for spinning black holes)
- quantum scattering: probability amplitude M

Particle physics perspective: scattering black holes are natural!

- \blacktriangleright quantum scattering: probability amplitude ${\cal M}$
- black holes ~ higher-spin massive particles ?
 e.g. [Arkani-Hamed, Huang, Huang (2017)]

Black holes as particles? Effective field theory (EFT)!

[adopted from arXiv:1906.08161]

weird:

- \blacktriangleright black holes have \approx minimal coupling in amplitudes / quantum fields
- black holes have nonminimal couplings in worldline action

EFT for post-Newtonian approximation

[Goldberger, Rothstein, PRD 73 (2006) 104029; Goldberger, arXiv:hep-ph/0701129]

for generic binaries in general relativity:

black holes

neutron stars

separation of scales (scale μ):

orbital size r

• wavelength
$$\sim \frac{r}{v}$$

Next EFT: conservative binary potential

Results for the (conservative) post-Newtonian potential

post-Newtonian (PN) approximation: expansion around $\frac{1}{c} \rightarrow 0$ (Newton)

order	<i>с</i> 0 N	c^{-1}	с ⁻² 1РN	<i>c</i> ⁻³	<i>с</i> ⁻⁴ 2РN	<i>c</i> ⁻⁵	<i>с⁻⁶</i> 3РN	c ⁻⁷	<i>с⁻⁸</i> 4РN	c ⁻⁹	с ^{—10} 5РN
non spin	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark		√?
spin-orbit				\checkmark		\checkmark		\checkmark		\checkmark	
$Spin^2$					\checkmark		\checkmark		\checkmark		\checkmark
Spin ³								\checkmark		\checkmark	
Spin ⁴									\checkmark		\checkmark
÷											·

recent work: Antonelli, Blümlein, Foffa, Von Hippel, Kavanagh, Khalil, Kim, Levi, Maier, Mandal, Marquard, Mastrolia, Mcleod, Morales, Mougiakakos, Patil, Schäfer, JS, Sturani, Teng, Vines, Yin, Luz Almeida

Comparison against numerical relativity (NR) ...

... of the N³LO spin-orbit (SO) binding energy E_b^{SO}

• for two mass ratios $q = 1, \frac{1}{3}$

using effective-one-body resummation

(method in that paper: uniquely constrain potential using self-force and mass-ratio dependence of scattering angle)

[Antonelli, Kavanagh, Khalil, JS, Vines, arXiv:2003.11391]

Worldline quantum field theory (WQFT)

[Jakobsen, Mogull, Plefka, Sauer, JS, '20+]

- integrate out worldline variables \rightarrow observables
- \blacktriangleright Schwinger-Feynman dressed massive propagator \rightarrow quantum fields

 \blacktriangleright scattering \rightarrow expansion around straight line:

Connection to scattering amplitudes

- \blacktriangleright can expand scattering amplitudes in \hbar using worldlines !
- modern "on-shell" methods \rightarrow classical methods ?
- can be applied to other observables, waveforms (for scattering black holes), extended to spin, tides

Tidal response from scattering [Creci, Hinderer, JS, 2108.03385]

Gravitational waves from a particle physics perspective

- more accurate gravitational-wave predictions needed in the near future
- EFT and Feynman diagrammatic expansion are powerful tools to predict gravitational waves
- connecting GW to scattering amplitudes may allow application of modern "on-shell" methods
- inspiral waveforms from amplitudes? improve eccentric waveforms?

Gravitational waves from a particle physics perspective

- more accurate gravitational-wave predictions needed in the near future
- EFT and Feynman diagrammatic expansion are powerful tools to predict gravitational waves
- connecting GW to scattering amplitudes may allow application of modern "on-shell" methods
- inspiral waveforms from amplitudes? improve eccentric waveforms?

Thank you!

graviton