

Probing subatomic physics with gravitational waves from

neutron star binary inspirals

Tanja Hinderer

Institute for Theoretical Physics Utrecht University

Overview

- Gravitational waves (GWs) now available as unique probes for fundamental physics
 - e.g. dense matter in neutron stars
- Extracting this information from the data requires theoretical understanding & accurate modeling
- Focus in this talk: tidal effects during a binary inspiral
 - Main characteristic parameters
 - Effects on the dynamics and GWs
- Outlook to remaining challenges and future prospects

Neutron stars (NSs)

- Gravity compresses matter to up to several times nuclear density
- Large extrapolation from known physics

- > Thousands observed to date, some masses > $2M_{\odot}$
- Quantum pressure (neutron degeneracy) can only support up to ~ $0.7 M_{\odot}$
- Unique window onto strongly-interacting subatomic matter

[Oppenheimer & Volkoff 1939]

Conjectured NS structure

NS matter ranges over nearly 10 orders of magnitude in density: rich variety of physics

[density of iron ~ 10 g/cm³]

crust ~ km

Lattice of neutron rich nuclei 10¹⁰ times stronger than steel free neutrons ~ 10⁶ g/cm³ inverse *β*-decay

~ 10¹¹ g/cm³ neutron drip

outer core

uniform liquid (neutron superfluid, superconducting protons, electrons, muons)

deep core

~ few x 10¹⁴ g/cm³

 $\gtrsim 2x$ nuclear density, nucleons overlap -

- new degrees of freedom relevant
- deconfined quarks?

intermediate exotic condensates (hyperons, kaons, pions, ...)?

Neutron stars as QCD labs

- Characterize phases of QCD, probe quark deconfinement
- Deeper understanding of strong interactions, their unusual properties
 - asymptotic freedom
 - Vacuum (condensate) effects

proton mass: ~ 938 MeV only ~ 1% due to Higgs

NSs as labs for emergent structural complexity

- Collective phenomena, multi-body interactions
- Effects of the excess of neutrons over protons (isospin asymmetry)?
- How do nucleons and their quarks and gluons assemble and interact to create the structure of matter?

Gravitational waves from compact-object binary systems

Models are essential to detect and interpret GW signals

Cross-correlating the data with theoretical models revealed: it was the signal from a black hole merger

Two black holes of ~ 30 sun masses Orbiting at 50,000km/sec ...

Spiral together until they collide ...

... and form a single black hole remnant

Census of binary mergers measured to date

2017 Nobel prize

R. Weiss, K. Thorne, B. Barish

GW measurements (binary systems)

Details of the waveforms encode fundamental source properties (masses, spins, ...)

 Measurements cross-correlate millions of template models with the data to determine the source parameters

Computation of template waveforms is very challenging:

Must solve the nonlinear Einstein Field equations coupled with the matter equations of motion for the dynamical spacetime

······

Approaches to computing waveforms

- Numerical relativity simulations: access to complex merger regimes ... limited in parameter space . sometimes difficult to identify fundamental physics parameters based solely on numerical outputs
- When different physics dominate at different scales:
 - tapestry of approximation schemes in different patches of spacetime
 - Can be further re-summed, e.g. into the effective one body framework

Example for comparable-mass inspirals:

GW signatures of interior structure during inspiral

- Generic phenomena, effects are small but clean and cumulative, accessible with current detectors
- associated characteristic parameters (e.g. Love numbers, quasi-normal mode frequencies) set the size of the GW signatures, encode object's internal structure

Dominant tidal effects

• In a binary: tidal field $\mathscr{C}_{ij} = R_{0i0j}$ due to spacetime curvature from companion

When variations in tidal field are much faster than NS's internal timescales (adiabatic limit):

Induced deformation:

tidal deformability parameter

 $\mathcal{Q}_{ij} = -\lambda \mathcal{E}_{ij}$

[TH 2008, Flanagan, TH 2008]

=0 for a black hole

[Kol,Smolkin '11,Pani+ , Chia '20, Casals, LeTiec '20,...]

+ much recent work on intriguing connections with symmetries etc

Similarly for higher multipoles

[Damour& Nagar, Binnington & Poisson 2009]

Properties of NS matter reflected in tidal deformability

Main influence on GWs

• Energy goes into deforming the NS:

$$E \sim E_{
m orbit} + rac{1}{4} {\cal Q} ~ {\cal E}$$

moving multipoles contribute to gravitational radiation

 $\dot{E}_{
m GW} \sim \left[rac{d^3}{dt^3}\left(Q_{
m orbit}+\mathcal{Q}
ight)
ight]^2$

• approx. GW phase evolution from energy balance:

$$\Delta \phi_{
m GW}^{
m tidal} \sim {oldsymbol{\lambda}} {(M\omega)^{10/3}\over M^5}$$

[Flanagan, TH 2008, Vines+ 2011, Damour, Nagar+ 2012, Henry+2021]

 $M = m_{\rm NS} + m_2$

Taking into account more realistic physics

• **f**-mode frequency: $\omega_f \sim \sqrt{G m/R^3}$ (internal-structure-dependent)

• tidal forcing frequency: ~ $2\omega \sim 2\sqrt{GM/r^3}$ [circular orbits]

Enhanced tidal effects even if the resonance is not fully excited

During an inspiral:

Response also impacted by:

- relativistic redshift z
 - frame dragging Ω_{fd} (from GR & companion's spin)

NS's spin Ω

 $\boldsymbol{\omega}$

More realistic couplings of matter to orbital dynamics

- Central worldline + multipole moments
- Effective action for the binary dynamics:

gravitomagnetic tidal tensor

More realistic couplings of matter to orbital dynamics

Many subtleties in the GR interplay of matter with gravity

- Nontrivial to define a 'worldline skeleton' [Dixon 1970]
- I 990s: does GR give rise to new couplings between internal degrees of freedom and orbital dynamics? E.g. seemingly numerical evidence for a <u>``relativistic crushing force</u>" in NS binaries

VOLUME 75, NUMBER 23	PHYSICAL REVIEW LETTERS	4 DECEMBER 1995
	Instabilities in Close Neutron Star Binaries	
	J. R. Wilson ¹ and G. J. Mathews ²	+ follow-up papers
surprising evider	nce that GR effects may cause otherwise	e stable
stars to i	ndividually collapse prior to merging	

Sociological account: Kennefick 2000 ``Star crushing: theoretical practice & the theoretician's regress"

- rigorous analysis using matched asymptotic expansions of spacetimes showed that there are no such new forces under the assumptions for this case (c.f. also other numerical studies)
 [Flanagan 1998: ``GR coupling between orbital motion & internal degrees of freedom ..'' paper]
- More recently: seemingly numerical findings of large tidal fields at higher post-Newtonian order, subtleties with gravitomagnetic tidal response, ambiguities in tidal deformability?, ...

Computing the tidal response from scattering

• Some concerns in the literature about potential ambiguities in tidal deformability e.g. S. Gralla: On the Ambiguity in Relativistic Tidal Deformability, arXiv:1710.11096

- Advantages of scattering calculations:
 - Identifications at null infinity, using double-null coordinates (geometric meaning)
 - invariant scattering amplitudes

Parameters in effective action in flat space matched to asymptotics of relativistic perturbations

• work with in- and outgoing waves instead of stationary perturbations

Gastón Creci, TH, Jan Steinhoff arXiv:2108.03385

Computing the tidal response from scattering

• Response determined by the in- and outgoing wave amplitudes through:

$$\lambda_{\ell}(\omega) = i \Xi_{\ell} \left[1 - 2 \left(1 + \frac{C_{\ell}^{\text{in}}}{C_{\ell}^{\text{out}}} e^{i \frac{\pi}{2}(D-1)} \right)^{-1} \right] \qquad \text{D=spatial dimensions}$$

Matching reveals:

 $\frac{C_{\ell}^{\text{in}}}{C_{\ell}^{\text{out}}} \Big|_{\text{Minkowski}} = \frac{A_{\text{in}}^{\infty}}{A_{\text{out}}^{\infty}} \Big|_{\text{Schwarzschild}} \qquad \Xi_{\ell} = -\frac{4\pi^{(D-2)/2}}{2^{\ell}} \left(\frac{2}{\omega}\right)^{(D-2)+2\ell} \Gamma\left(\frac{D-2}{2}+\ell+1\right)$ $\int C_{\ell}^{\text{Cout}} \int C_$

Final result for the scalar case

• Substituting details: information contained in the response function is as expected:

• e.g. in D=3 spatial dimensions, in the limit $M\omega\ll 1$

• Real part of the response is zero: tidal Love number vanishes

• Similar to frequency-dependent response in optics \leftrightarrow material's refractive index

- Imaginary part: absorption
- Real part: refraction, phase shift compared to incident beam

Finite size effects included in models for data analysis

Matter effects in models for data analysis

- For inspirals: variety of physics & assumptions, e.g. some but not all of the models
 - Rely on quasi-universal relations used to reduce matter parameters to λ_1, λ_2
 - Are calibrated to numerical relativity
 - Include some dynamical tidal effects

• ...

Measurements/constraints on tidal deformability

e.g. detector calibration, ...]

for two NSs: GWs most sensitive to the combination (similar to chirp mass):

$$\tilde{\Lambda} = \frac{13c^{10}}{16\,G^5\,M^5} \left[\left(1 + 12\frac{m_2}{m_1} \right) \lambda_1 + \left(1 + 12\frac{m_1}{m_2} \right) \lambda_2 \right]$$

Example implications for subatomic physics

- Joint constraints with other observations (kilonova, x-ray, radio) + subatomic physics
- E.g. can start to inform chiral effective field theory extensions (nuclear multi-body interactions, symmetry energy ...):

many different groups have studied all kinds of different aspects

Proof of principle: GW constraints on *f*-mode frequency

- Measuring both λ and ω_f
- quadrupole & octupole for each star: 8 matter parameters, expect deterioration in measurements
- more efficient approximate frequency-domain model [Schmidt, TH 2019]

Near-term future prospects

next observing run O4: LIGO/Virgo near/reaching design sensitivity

- More accurate measurements of nearby sources
- greater number & diversity of events

Plans for next-generation detectors moving ahead (~2035)

• Prototype being built in Maastricht

- I0 times better sensitivity than LIGO/Virgo, wider frequency range
 - O(100 000) binary merger detections per year
 - High precision studies of nearby sources

A few examples of remaining theoretical challenges

Need high-accuracy and efficient waveforms over wide parameter space

- more matter effects & relativistic corrections
- arbitrary spins
- eccentricity, ...

•

•

• role of beyond zero-temperature, equilibrium matter?

• degeneracies (e.g. modified gravity, dark matter/BSM physics), ...

Conclusions

- GWs are new probes of NS physics: clean gravitational channel of information
- Exciting near- & longer-term prospects with larger & more precise datasets
- Simultaneous advances in modeling are essential to fully realize the science potential, reduce biase in measurements and interpretation

- Significant progress on understanding, modeling relevant phenomena but much work remains
- Synergy of theoretical approaches important (diverse analytical + numerical)
- Interdisciplinary cooperation needed on connections and fundamental inputs