Messengers from the high-energy universe

Jenni Adams University of Canterbury, N.Z. Visitor at NBIA

Nyt fra Niels Bohr International Academy Kurs 2013

Cosmic Rays 100 years since Victor Hess's discovery

Cosmic Rays Puzzling physicists for over 200 years

Cosmic Rays 100 years since Victor Hess's discovery

Cosmic Rays 100 years since Victor Hess's discovery

"The results of present observations are more reliably explained assuming that an highly penetrating radiation enters our atmosphere from the top, and then produces in the lower layers part of the ionization observed in closed detectors."

Hess (1913) published article

Cosmic Rays Spectrum and possible sources...

Cosmic Rays Influenced by magnetic fields

Cosmic Rays Influenced by magnetic fields, luckily for us

Astroparticle Physics [5A1312]

Cosmic Rays Influenced by magnetic fields, unluckily for cosmic ray astronomy

Cosmic Rays How are they accelerated?

Cosmic Rays Where could they be accelerated?

Cosmic Rays Where could they be accelerated?

Cosmic Rays From the Universe's most extreme objects

AGNs The most massive black holes

Magnetars The strongest magnetic fields

GRBs The brightest explosions

Galaxy Clusters The largest gravitationally bound objects

Cosmic Rays How do we detect them?

Cosmic Rays How do we detect them?

Cosmic Rays Pierre Auger Observatory

689988 9988998

Cosmic Rays How do we detect them?

Neutrinos and Gamma Rays From cosmic ray interactions

Neutrinos and Gamma Rays From cosmic ray interactions

Messenger Comparison

Figure: Wolfgang Wagner, PhD thesis

Cosmic Rays

Fermi – Gamma Ray verification of supernova remnant source

Messenger Comparison

Figure: Wolfgang Wagner, PhD thesis

Astrophysical neutrinos

J. Becker Phys. Rep.

IceCube Neutrino Observatory

IceCube is a LARGE neutrino detector...

Super Kamiokande

IceCube detector

Detection Principle

Detection Principle

The IceCube Neutrino Observatory

Neutrinos are detected by looking for Cherenkov radiation from secondary particles (muons, particle showers)

Neutrinos IceCube - two event signatures

Neutrino creates long range particle

Neutrino creates short range particle which initiates a shower

Neutrino Cascade event signature

IceCube Background from cosmic ray air showers

Downgoing Muons

0.5

Muon rate:

In ice: 2800 / second – compared to 1 neutrino/10 minutes Requires 10⁶ background rejection

rinos in the data rbial needle in a haystack task

Hunts Needle in a Haystack

How LONG does it take to find a needle in a haystack? Jim Moran, Washington, D. C., publicity man, recently dropped a needle into a convenient pile of hay, hopped in after it, and began an intensive search for (a) some publicity and (b) the needle. Having found the former, Moran abandoned the needle hunt.

IceCube Background rejection - upward tracks -use outer parts of the detector as a veto

Two year IceCube Search 28 high-energy neutrinos found

Summary

- Cosmic rays, gamma rays and neutrinos offer a view into the highenergy universe
 - A range of detectors used to observe them
- It is still a mystery where the highest energy cosmic rays come from
- Through the detection of astrophysical neutrinos we might be soon able to solve this mystery

