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Prelude to Understanding
What determines the motion of wandering stars?

Geo-Heliocentric

• the main difficulty with all these theories was that
• motion seems orderly;

• to whatever extent they were predictive,

Geocentric Heliocentric

many theories proposed:

they were obviously wrong
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Refinements through Observation
• Tycho Brahe suggested settling this debate by 

carefully observing how planets actually moved
• he persuaded Emperor Rudolph II to build him an 

observatory, and Johanes Kepler to analyze the data
Two shocking discoveries:

• planetary orbits 
are not circular 
but elliptical

• the sun is not 
at the center, 
but at a focus



• In 1687, Newton puts forth his System of the World
giving his Laws of Motion:

Newton’s System of the World



                   (Galilean relativity)

• In 1687, Newton puts forth his System of the World

• inertia
giving his Laws of Motion:

Newton’s System of the World



                   (Galilean relativity)

• In 1687, Newton puts forth his System of the World

• inertia
• forces

giving his Laws of Motion:

Newton’s System of the World



                   (Galilean relativity)

• In 1687, Newton puts forth his System of the World

• inertia
• forces

giving his Laws of Motion:

F = ma

Newton’s System of the World



                   (Galilean relativity)

• In 1687, Newton puts forth his System of the World

• inertia
• forces

giving his Laws of Motion:

m1 m2

F1 F2

r

F1 = F2 = G
m1 m2

r2

• Law of Gravitation

Newton’s System of the World



                   (Galilean relativity)

• In 1687, Newton puts forth his System of the World

• inertia
• forces

giving his Laws of Motion:

• Law of Gravitation

Newton’s System of the World



Confrontations with Experiment I



Confrontations with Experiment I



Confrontations with Experiment II
• Allowing for light’s delay,
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years of further data

• until Uranus slowed 
down around 1820

Urbain LeVerrier, 1845



Confrontations with Experiment II
• Allowing for light’s delay,

observations were in pefect  
agreement for nearly 200
years of further data

• until Uranus slowed 
down around 1820

Urbain LeVerrier, 1845



• We can understand motion as arising through a 
succession of forces acting at each instant of time

Radical Reformulation of the Rules

• while intuitive, often quite mathematically challenging



• Within a century after Newton, a new, radically 
different (but equivalent) description was found

• We can understand motion as arising through a 
succession of forces acting at each instant of time

Radical Reformulation of the Rules
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Quantum Particles & Probability



ee

• Forces (both classical and quantum) arise 
from the exchange of “force particles”:

Feynman’s Formulation of Force



• Shining light on an electron “rotates” it by a certain 
amount, called the gyromagnetic ratio, 

gtheorye = 2 [1928]

ge
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Summing Over Histories
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• Shining light on an electron “rotates” it by a certain 
amount, called the gyromagnetic ratio, 

gtheorye = 2.00232 . . . [1947]
gexpte = 2.0023 . . . [1947]

ge

Summing Over Histories



• Shining light on an electron “rotates” it by a certain 
amount, called the gyromagnetic ratio, 

gtheorye = 2.0023193 . . . [1957]
gexpte = 2.00231931 . . . [1972]

ge

+. . .

Summing Over Histories



• Shining light on an electron “rotates” it by a certain 
amount, called the gyromagnetic ratio, 

gtheorye = 2.0023193044 . . . [1990]
gexpte = 2.00231931 . . . [1972]

ge

+. . .

Summing Over Histories



• Shining light on an electron “rotates” it by a certain 
amount, called the gyromagnetic ratio, 

gtheorye = 2.00231930435801 . . . [2012]
gexpte = 2.002319304361 . . . [2011]

ge

Summing Over Histories



• Quantum field theories are specified by a 
list of elementary processes
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space

Feynman Diagrams

Quantum Chromodynamics

Modern Laws of Nature: QFT
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• Quantum field theories are specified by a 
list of elementary processes

• The predicted distribution of outcomes for 
any experiment can then be calculated by  
summing over all possible “histories”

+ + + + .
(216         )

..

Exempli Gratia: collide two gluons, and find four coming out

moreterms

Modern Laws of Nature: QFT



Discovery of the Higgs Boson

Higgs



Challenges and Triumphs of QFT
• The amplitude for (2 gluons)       (4 gluons) was computed

by Parke and Taylor in 1985
• the calculation required many

clever tricks, and one of the
most powerful supercomputers 
in the world (at the time)

• The final formula:

412 S.J. Parke, T.R. Taylor / Four gluon production 

gluons. The cross section for the scattering of two gluons with momenta p~, P2 into 
four gluons with momenta P3, P4, P5, P6 is obtained from eq. (5) by setting I = 2 and 
replacing the momenta P3, P4, P5, P6 by -P3, -p4, -P5, -P6. 

As the result of the computation of two hundred and forty Feynman diagrams, 
we obtain 

A(o)(p~, P2, P3, P., Ps, P6) 

(9 ' ,  * * t Ko 
= 9 ~ , 9 ~ , 9 , ) ( o ) .  K~ 

K. K~ Ko 9 ,  (o) 

(6) 

where ~, ~p, ~ and ~ ,  are ll-component complex vector functions of the momenta 
P~, P:, P3, P4, P5 and P6, and K, K o , /~  and K, are constant 11 x 11 symmetric matrices. 
The vectors ~o, $¢ and ~ ,  are obtained from the vector 9 by the permutations 
(P2 ~-* P3), (P5 *'* P6) and (P2 ~'* P3, P5 *-" P6), respectively, of the momentum variables 
in 9. The individual components of the vector 9 represent the sums of all contribu- 
tions proportional to the appropriately chosen eleven basis color factors. The 
matrices K, which are the suitable sums over the color indices of products of the 
color bases, contain two independent structures, proportional to N 4 ( N  2 - 1 )  and 
N 2 ( N  2 - 1 ) ,  respectively (N is the number of colors, N = 3 for QCD): 

K = -~gSN4 ( N 2  - 1 ) K  (4) +!g S N 2 ( N 2  - 1 ) K  (2) . (7) 

Here g denotes the gauge coupling constant. The matrices K (4) and K (2) a re  given 
in table 1. The vector 9 is related to the thirty-three diagrams DG(I = 1-33) for 
two-gluon to four-scalar scattering, eleven diagrams DF(I = 1 - 11) for two-fermion 
to four-scalar scattering and sixteen diagrams DS(I= 1-16) for two-scalar to 
four-scalar scattering, in the following way: 

2Sl4 
9 0  = X/],.g15S45SI6S461S23S56 {/223cG " DGo - 4s14t123E(p5 +P6,  P6)C F" D~ 

- 2s14G(p5 +P6, P5 +P6)C s" DoS}, 

92 = s56 c ~" D ~ ,  (S) 
$23 

where the constant matrices C ° 0 1  x33), CF(ll  x 11) and CS(ll x 16) are given in 
table 2. The Lorentz invariants s~ and t,jk are defined as s , j=(pi+pj)  2, tUk = 
(p, +pj +pk) 2 and the complex functions E and G are given by 

E (p,, pj ) = ! { (p~ p,) (p, pj ) - (p~ p, ) (pjp 4) - (p, pj )(p,p4) + "ze~,~pA p ~" p, ~ p j p p ,A }/(p~ P4) , 

G ( p .  pj) = E(p, ,  p s ) E ( p .  P6), (9) 
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The cross section for two-gluon to four-gluon scattering is given in a form suitable for fast 
numerical calculations. 

Theoretical predictions for four-jet production at hadron colliders allow detailed 
tests of QCD. Moreover, at SSC energies, four jets become a serious background 
to many interesting processes which probe new physics, e.g. pair production of 
electroweak bosons [ 1 ]. Hence a detailed knowledge of four-jet event characteristics 
is crucial for good background rejection. Although some individual contributions 
to four-jet production have already been analysed (see e.g. ref. [2]), the two-gluon 
to four-gluon scattering, which is the dominant contribution for a wide range of 
subprocess energies, has remained beyond the scope of previous computational 
techniques. Here we outline our calculation of the cross section for this process, in 
the tree approximation of perturbative QCD. The final cross section is presented in 
a form suitable for fast numerical calculations. 

Our calculation makes use of techniques developed in ref. [3], based on the 
application of extended supersymmetry. We adopt the convention that all particles 
involved in a scattering process are incoming• An outgoing particle of momentum 
p and helicity s will be represented as an incoming antiparticle of momentum - p  
and helicity -s.  Let M(z~ ,  . . . . .  , zs~) denote the amplitude for the process with the 
incoming particles z~ , . . . ,  z n of helicities s , . . . ,  s, and momenta Pl,. • •, P~. The 

• • 7=6 momenta satisfy the conservation equation, ~,= ~ p, = 0. We find that all nonvanishing 
six-gluon helicity amplitudes can be obtained by crossing and/or complex conjuga- 
tion from two amplitudes, M ( g ~_, g 2 , g 3 , g 4,  g S+, g 6+ ) and M ( g~_, g 2 , g 3 , g 4+, g S+, g 6+ ) I 
These amplitudes can be expressed in terms of the.amplitudes for processes involving 
a smaller number of gluons plus spin-one-half massless gluinos A and spin-zero 
massless scalar gluons 4,, using supersymmetry relations (on-shell Ward-Takahashi 
identities). The first of the two relations is very simple: 

[M(g~_, g2_, g3_, g 4_, gS+, g6)l = s5__~6 i M ( g [ ,  g,_, c~2_, ok3_, ~5+, ck6+)[ , 
S23 
410 

(1) 
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where the constant matrices C ° 0 1  x33), CF(ll  x 11) and CS(ll x 16) are given in 
table 2. The Lorentz invariants s~ and t,jk are defined as s , j=(pi+pj)  2, tUk = 
(p, +pj +pk) 2 and the complex functions E and G are given by 
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Matrices K(I, J)[I = l-11, J= l-111. 

Matrix K@) Matrix KC*) 

8 4 -2 2 -1 2 0 1 0 0 -1 0 0 0 0 0 0 0 0 3 3-3 
4 8-l l-1 0 2 1 0 1-l 00000000330 

-2-1844112212 00000000000 
2 1 4 8 2 -1 -1 4 1 1 1 ooboooooooo 

-1 -1 4 2 8 1 2 4 -2 -1 4 00000000000 
2 0 l-l 1 8 4-l 0 1 0 00000000330 
0 2 l-l 2 4 8-2 0 0 0 00000000330 
1 1 2 4 4 -1 -2 8 -1 -1 2 00000000000 
0 0 2 l-2 0 O-l 8 4-2 33000330000 
0 1 1 l-l 1 0 -1 4 8 -1 33000330000 

-1 -1 2 1 4 0 0 2-2-l 8 -3 0 0 0 0 0 0 0 0 0 0 

Matrix KY) Matrix Kr’ 

0000110110-1 33030003000 
0000201 12 l-2 33000000000 
00000111011 00300300330 
00001002010 30000300000 
1 2 0 10122002 00000000330 
10 10 14 2 0 0 o-1 00330000330 
0 1 10 2 2 4 0 0 o-2 00000000030 
1 1122004000 30000000300 
1200000002-1 00303303000 
01110000240 00303330000 

-1 -2 1 0 2 -1 -2 0 -1 0 4 00000000000 

Matrix Kr’ Matnx K$?’ 

4202010 
2401001 
0042211 
2120121 
0021000 
1012000 
0 1 1 1 0 0 0 
1 1 1 0 0 0 0 
0021412 
0110224 
0000200 

1 0 0 0 
1 0 1 0 
1 2 1 0 
0 1 0 0 
0 4 2 2 
0 1 2 0 
0 2 4 0 
0 2 0 1 
2 0 o-4 
0 0 o-2 
1 -4 -2 4 

0000000 
0000300 
0000003 
0000000 
0300003 
0000033 
0030333 
0300000 
3000000 
0000000 

-3 0 0 0 0 -3 0 

0 3 o-3 
3 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 o-3 
0 0 0 0 
3 0 0 0 
0 0 0 0 
0 0 3 0 
0 0 0 0 

Matrix KY) Matrix KF’ 

0 1 -1 -1 1 101200 33000330000 
1 o-2-1 2 0 1 I 4 2 0 33000330000 

-1-2 0 0 0 1 1 l-l 10 00333003000 
-1-l 0 1 0 2 1 0 1-l 0 00333003003 
1 2 0 0 l-l -1 0 -2 2 1 00333003000 
10 12-1 0 l-2 2 4-l 3 3 0 0 0 3 3 0 0 o-3 
0 1 1 l-l 1 0 -1 4 8 -1 33000330000 
1 1 1 0 0 -2 -1 0 2 -2 0 00333003000 
2 4-l l-2 2 4 2 1 0 -2 00000000330 
0 2 l-l 2 4 8-2 0 0 0 00000000330 
0 0 0 0 1-l -1 0 -2 0 2 0 0 0 3 o-3 0 0 0 0 0 
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where e is the totally ant isymmetr ic  tensor, exyz, = 1. For  the future use, we define 
one more  funct ion,  

F(p,, pj)= {(p, p4)(p, pj)+(plp,)(p.,p4)-(plp:)(p, p4)}/(plP4) . (10) 

Note  that  when  evaluating Ao and A2 at crossed configurations o f  the momenta ,  
care must  be taken with the implicit dependence  o f  the functions E, F and G on 
the m o m e n t a  pa, P4, Ps, P6. 

The diagrams D2 ~ are listed below: 

D~(1) 82 
S14S25S36 - -{[ (p2-ps) (pa-P6)][(p , -p4)(p3+P6)]-[ (p2-ps) (p3+P6)]  

x [(Pl - P4)(P3 - P6)] + [(P2 + Ps)(P3 - P6)][(P~ - P4)(P2 - Ps)]}, 

1 
D2C(2) = {2E (p2 - P s ,  P3 -P6)  - 2E(p3 -P6 ,  P2 - P s )  + 82[(P2 -Ps)(P3 - P6 ) ] } ,  

$25536 

4 
D ~ ( 3 ) = - -  

S25 $36 t125 {[(P,+p2-ps)(Pg+p3-P6)]E(p2, pa) 

- [ (p ,  +p2  - p~)(p.  - p ~  + p~)]E(p2,  p~) 

- [(pl  - p 2  + P s ) ( P 4 + P a - P 6 ) ] E ( p s ,  P3) 

& [ (Pl - P2 d- P5 ) (P4 - P3 + P6)] E (Ps. P6) 

-- [P~ (P2 - p s ) ] E ( p 3  - P6, P3 + P6) - [P4(P3 - p6)]E(p2 + Ps, P2 - Ps) 

+ 62[p~ (P2 - Ps)][P4(P3 - P6)]},  

- 2  
D~(4)  = 

$36t125 

- 2  D~(5) = 
S25[125 

DO(6) = 62 
[125 

4 D:~(7) = - -  
S12S36[125 

{ E (P3 - P6, P3 + P6) - 62[p4(p3 - P6)]}, 

{E(p2 '~-P5, P2 - P 5 )  - ~2[Pl (P2 - Ps ) ] }  , 

{[(P,+P2-P5)(P4+P3-P6)]E(p2, P3) 

D ~ ( 8 ) = - -  

-[(pl@P2-P5)(p4-P3@P6)]E(p2,P6)-[p4(P3-P6)]E(p2,P2-Ps)}, 

$34S25 [125 
{[(Pl+P2-P5)(P4+p,-p~)]E(pz, p,) 

- [ ( p l  - p2 + p5)(p4 + p.  - p 6 ) ] E  (ps. p . )  - [p. (p= - p s ) ] E ( p .  - p ~ .  , 3 ) } .  

416 S.J. Parke, T.R. Taylor / Four gluon production 

D ~ ( 9 )  = - -  
S15S36/125 

{[(Pl - P2 + Ps)(P4 + P3 --  P6)] E (Ps, P3) 

-- [(Pl - -P2+P5)(P4- -P3  +P6)]E(p5, P6) + [P4(P3 -P6)]E(p5, P2 - P 5 ) } ,  

D ~ ( 1 0 )  = - -  
$25S46/125 

{[(P~ + P2 - Ps) ( P 4 -  P3 + p6)]E (P2, P6) 

- [(P~ - P2 + Ps)(P, -  P3 + P6) ]E (P5, P6) + [P~ (P2 - Ps) ] E  (P3 - P6, P6)}, 

D ~ ( l l )  = ~2 [S35 __ $56..~. $36] ' 
S361124 

D2G(12) = '732" [$23 -- S26-- $36] ,  
$36f145 

~2 
D ~ ( 1 3 )  = - - .  [$12 -- $24][S35 -- S56 --[.- $36], 

S14.$36 fi24 

D ~ ( 1 4 )  - 82 
S14536t145 
- -  [ S 1 5 - - S 4 5 ] [ S 2 3 - - $ 2 6 - - S 3 6 ]  ~ 

82 
O2°(15) = " (Pl -Pa)(P3-P6) ,  

S14S36 

- 4  
D ~ ( 1 6 )  = ~ [s35 - s56 + s36]E(p2, P2) ,  

$12S36/124 

4 
D ~ ( 1 7 )  = . [s23-s26-s36]E(ps, ps) ,  

S36S45 I145 

- 4  
S12S36S45 

[2(pl  + P2) (P3 - P6) - $36] E (P2, P 5 ) ,  

- 2  
D2°(19) = E(p2 ,p3-P6) ,  

$12S36 

2 
D2G(20) = E(p3-p6 ,  P5), 

$36S45 

- 4  
D2°(21) = [ s 2 6 -  s56+ s25]E(p3, P3), 

$25$34ti34 

4 
D ~ ( 2 2 )  = ~ [s23-s35-s25]E(p6,P6), 

$16525[146 

D ~ ( 2 3 )  = 4 
S16S25534 

[2(p]  + P6)(P2 -Ps)  + SE5]E(p6, P3) ,  

S.J. Parke, TIC Taylor / Four gluon production 

- 2  
D2°(24) = E(p2-P5,Pa), 

S25S34 

2 
D2G(25) = E(p6, P2-Ps) ,  

S16S25 

- 2  
D2G(26) = E(p2, P2-Ps ) ,  

$12/125 

2 
D2°(27) -- E (P3 - P6, P6), 

s46/125 

2 
D2G(28) = E(ps,  p : - p s ) ,  

SI5t125 

- 2  
D2G(29) - E(p3 -P6,  P3), 

s34t125 

4 
D2~(30) = . [(p~+p2-Ps)(p4+Pa-P6)-t,25]E(pE, Pa), 

$12$34/125 

4 
D~(31) = . [(p]+p2-ps)(p4-P3+P6)+fi25]E(p2,P6), 

$12S46t125 

4 
D2°(32) - . [(p,-p2+ps)(p,+p3-P6)+h25]E(ps, P3), 

SI5S34[125 

4 
D2C(33) = [(p~-p~+ps)(p~-pa+p~)- q25]E(ps, P6), 

S15S46t125 

417 

(11) 

where 82 = l. 
The diagrams D~ are obtained from D~ by replacing 82 by 80 = 0 and the functions 

E(p,,pj) by G(p,,pj). 
The diagrams D~ are listed below: 

D ~ ( 1 ) = - -  

D ~ ( 2 ) = - -  

S15S34t125 
{F(ps, p6)E(p3, Ps) - F(ps, p3)E(p6, Ps) 

+ [F(p6,  P3) + s34]E(Ps, Ps)} ,  

- 4  

S16S25S34 
{ IF(P6,  P2) +½s,6]E(p3, Ps) 

+ [F(p2,  P3) + ½s34]E(p6, Ps) - F(p6, P3) E (P2, Ps)} ,  

Do~(3) 4 
Si5S36~125 
- -  {F (ps ,  p6)E(p3, Ps) - F(ps, p3)E(p6, P5) 

-[F(pa, P6)-½s36 ~ - ~sa4 + ~s~] E (ps, ps)}, 

418 S.1 Parke, T.R. Taylor / Four gluon production 

4 
DoF(4) = {F(pz ,  p3) E (ps, P5) - F(ps, p~) E (p2, Ps) 

525534 1,25 

+ [ F ( p 5 ,  , 1 l P2) - ~ s 2 s -  ~s ,2+~s ,s ]E(p3 ,  P5)}, 

DoF(5) = 2 [S35 -- S23 "Jr" 525]E (P6, Ps) 
s16525 f146 

DoF(6) = 2 [556 - s26 - 525]E(p3, Ps) ,  
S25534[134 

4 
Do~(7) = _ _  

$25536t125 
{[F(ps ,  ' t l P2) -Is25-Is12+~sls]E(P3, Ps) 

+ [F(p2, P3) +-~t,25]E (ps, P5) - [F(ps, P3) +!t,25]E(p2, P5)}, 

1 D~(8)= 
S14S36 

E ( P 3  - -  P6, PS),  

O ~ ( 9 ) =  2 
S,4S36ti24 
- -  [$35-s56-t-s36]E(p2, Ps) ,  

Do~(10) = - -  
S14S361145 

[S23--S26--S36]E(ps, Ps) ,  

1 
D~01) = 

2St4S25536 
{[s23+s35-s26-s56]E(p2-P5,P5) 

- [ s23 + s26 - s35 - s56] E (P3 - P 6 ,  Ps) - [ s23 + s56 - s35 - s26] E (P2 + P5, Ps)}.  
(12) 

The  d i a g r a m s  Do s are  l isted be low:  

1 
DoS(l) = . [ s 3 4 -  s~+  s36][s,2- s , 5 -  s2s],  

$25S361125 

1 
D ~ ( 2 ) =  ~ [su-s24-s ,4][s35-Ss6+S36],  

$14S361124 

1 
O~(3)  . [s,s-s45+s,4][s23-s26-s36],  

S,4S36[,45 

1 O~(4) 
SlsS36t,25 
- - [SI5"3t -S25--S12][S34--S46Jt 'S36] ,  

DOS(5) 1 
S,5S34t156 

1 
SI5s34t125 

DS(6)  - -  [s46- Sa4- s36][s,z- s25- s i s ] ,  
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DOS(7) = ~ [ s 3 , -  s ~  + s3,][ s12-  s , 5  - s2~], 
S25S34t125 

1 
D°~(8) = s,6s25tl~ [s2~ + s3~ - s ~ ] [ s ~ , -  s ~  + s16] , 

1 
DS(9) = s25s~t134 [sl4 + s34- sl~][s26- s56 + s2s], 

1 
DOS(10) = ( P 2 -  Ps)(P3 - P6) , 

s25s36 

1 
DoS(11) = (P, - P,)(P3 - P6) , 

$14S36 

DS(12) = 1 ( P , - P , ) ( P 2 - P s ) ,  
S16S25 

Do~(13)= ! ( p s - p , ) ( ~ 3 - ~ , ) ,  
SI5S34 

1 
DOS(14) = (P2 - Ps)(P3 - P 4 ) ,  

S25S34 

1 
DOS(15) = - -  { [ ( P 2 ~ - P s ) ( P 3 - P 6 ) ] [ ( p i - P 4 ) ( P 2 - p 5 ) ]  

SI4S25S36 

-[" [(P2 -- P5) (P3 -- P6)][(Pl -- P4)(P3 "t- P6)] 

+ [(p, +p~)(p~ - p~)]E(p, -p~)(p~ - p6)]} ,  

2 
DS(1 6) = - -  {[ (P2 - Ps) (P3 + P4)][ (el -- P6) (P3 -- P4)] 

SI6S34S25 

+ [" (Pl @ P6) (P3 -- P4)] [ (Pl -- P6) (P2 -- P5) 

+ [(P~ - P6)(P2 + Ps)][(P3 - P 4 )  (P2 - P 5 ) ] }  • (13) 

The preceding list completes the result. Let us recapitulate now the numerical 
procedure of  calculating the full cross section. First the diagrams D are calculated 
by using eqs. (11)-(13). The result is substituted to eq. (8) to obtain the vectors ~o 
and ~2. After generating the vectors ~op, @o~, ~o~, ~2~, ~2¢ and ~2~ by the appropriate 
permutations of momenta, eq. (6) is used to obtain the functions Ao and A 2. Finally, 
the total cross section is calculated by using eq. (5). The FORTRAN 5 program 
based on such a scheme generates ten Monte Carlo points in less than a second on 
the heterotic CDC CYBER 175/875. 

Given the complexity of  the final result, it is very important to have some reliable 
testing procedures available for numerical calculations. Usually in QCD, the multi- 
gluon amplitudes are tested by checking the gauge invariance. Due to the specifics 
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of our calculation, the most powerful test does not rely on the gauge symmetry, but 
on the appropriate permutation symmetries. The function Ao(pl, P2, P3,P4, Ps, P6) 
must be symmetric under arbitrary permutations of the momenta (pl, Pc, P3) and 
separately, (P4, Ps, P6), whereas the function A2(pb P2, P3, P4, Ps, P6) must be sym- 
metric under the permutations of (p~, P2, P3, P4) and separately, (Ps, P6). This test is 
extremely powerful, because the required permutation symmetries are hidden in 
our supersymmetry relations, eqs. (1) and (3), and in the structure of amplitudes 
involving different species of particles. Another, very important test relies on the 
absence of the double poles of the form (s,j) -2 in the cross section, as required by 
general arguments based on the helicity conservation. Further, in the leading (so) -~ 
pole approximation, the answer should reduce to the two goes to three cross section 
[3, 4], convoluted with the appropriate Altarelli-Parisi probabilities [5]. Our result 
has succesfully passed both these numerical checks. 

Details of the calculation, together with a full exposition of our techniques, will 
be given in a forthcoming article. Furthermore, we hope to obtain a simple analytic 
form for the answer, making our result not only an experimentalist's, but also a 
theorist's delight. 

We thank Keith Ellis, Chris Quigg and especially, Estia Eichten for many useful 
discussions and encouragement during the course of this work. We acknowledge 
the hospitality of Aspen Center for Physics, where this work was being completed 
in a pleasant, strung-out atmosphere. 
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Completing the Revolution
Remarkable advances in recent years:
• the recursion relations for computing amplitudes 

were found to extend to all orders of complexity!
• each term can be characterized combinatorially
• each term represents the volume of a polytope
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