# Theoretical Physics in an era of Machine Learning



Frontiers of Physics - News from the NBIA Evert van Nieuwenburg evert.vn@nbi.ku.dk

> The Niels Bohr International Academy

# Theoretical Physics in an era of Machine Learning Frontiers of Physics Please feel free to ask questions!

The Niels Bohr International Academy

## Some words about me



### Leiden University, Netherlands

### → ETHzürich →



**California Institute of Technology** (Caltech)

My Trajectory On Google Earth

## The content of this lecture

### What is Machine Learning? An introduction by example How can it help research in physics?



### **Bonus: Quantum Games**

# Machine Learning is fun

### Locomotion



deepmind.com/blog/article/producing-flexible-behaviours-simulated-environments

# Machine Learning is fun

### Multi-Agent Hide & Seek



https://openai.com/blog/emergent-tool-use/

### Locomotion



deepmind.com/blog/article/producing-flexible-behaviours-simulated-environments

# Machine Learning is everywhere







### **Natural Language Processing**

https://talktotransformer.com/

Generative Modelling https://thispersondoesnotexist.com/



Speech Synthesis "Deep-Fakes"

. . .

### Machine Learning is a different way of solving problems

(An example of "supervised learning" - more in a few slides!)







# The main component in many ML techniques is a neural network





## The main component in many ML techniques is a neural network





### Cat recogniser network

## The main component in many ML techniques is a neural network



Repeat for all cats, tweaking the knobs so that we recognize all of them! This is 'learning'





= 0.31 \* w1 + 0.33 \* w2 + 0.28 \* w3 + ...



= tanh( 0.31 \* w1 + 0.33 \* w2 + 0.28 \* w3 + ... )



The knobs from before are the w's (the weights)

## This is the entire essence of (artificial) neural networks



A Neural Network is a highly non-linear, parameterised function  $y(\mathbf{x}, \{\mathbf{w}\})$ 

### **A Neural Network**



### Learning = updating the weights to minimise the loss-function

Input











Error: 4

**Network Prediction** 







### A workflow for neural networks looks like this:

### Step 1



 $\mathscr{L}(\mathbf{w}, \{\mathbf{x}\}) =$ 

**Gradient Desce** 

Generalize. Use the network to infer (predict) the right output for new inputs Step 3

Step 2

Given: A dataset with many inputs x and corresponding outputs  $y_{true}(x)$ 

$$= \sum_{\mathbf{x} \in \{\mathbf{x}\}} \left( y \operatorname{true}(\mathbf{x}) - y \operatorname{network}(\mathbf{w}, \mathbf{x}) \right)^{2}$$
  
ent / Backpropagation  $\mathbf{W} \to \mathbf{W} - \nabla_{\mathbf{W}} \mathscr{L}$ 

# Neural Networks come in many topologies

### https://www.asimovinstitute.org/neural-network-zoo/



Van Veen, F. & Leijnen, S. (2019). The Neural Network Zoo. Retrieved from https://www.asimovinstitute.org/neural-network-zoo



# A quick summary



A Neural Network is a machine with many parameters (knobs), that we can tune (train) so that it reproduces the answers we want

- Given enough parameters, we can fit any function we want
  - (For example, we can fit the 'is\_this\_a\_cat?' function) (Or, we can fit a 'turn\_random\_noise\_into\_a\_face' function) (... etc)

# There are roughly three types of ML



### **Reinforcement Learning** Learning from feedback



Learn a policy, (best action in a given state *s*)

Learn  $\pi(s)$ 

Sutton&Barto



# Each of these types has a use in physics

### Supervised Learning Learning from examples

Picture of a galaxy -> which type?

LHC collisions -> which particles? LHC -> interesting collision?

Material -> superconductor?

### Learn p(y | x)

Classification

Unsupervised Learning Learning about examples

Generate more superconductors?

**Run EXPERIMENTS!** 

Learn p(x)

(Draw samples to generate!)

Reinforcement Learning Learning from feedback

**Correct errors in a quantum computer** 

**Control EXPERIMENTS!** 

Learn  $\pi(s)$ 

Sutton&Barto



### **Condensed Matter Physics** Studies properties of matter

How well does a piece of metal conduct? Why are metals shiny? How do superconductors work? How does an insulator work? How do we make a quantum computer? At what temperature does a magnet stop working?

## This is how we use ML for Quantum Physics



www.netket.org

**Reinforcement Learning Correcting a quantum computer** 



**Controlling experiments** 



## This is how we use ML for Quantum Physics





### Supervised learning can be used to find phase transitions







 $T \ll T_c$ 









 $T_c$ ?

### Supervised learning can be used to find phase transitions











 $T \ll T_c$ 





### Supervised learning can make some experiments 100x faster

At QDev, Ferdinand Kuemmeth works on qubits

Reading out the qubit state: electric signals The signal is then demodulated using techniques that are rooted in old radio-technology Takes 10-100 microseconds!



Quantum bit: can be part 0 and part 1 simultaneously



## This is how we use ML for Quantum Physics



www.netket.org



### Unsupervised learning can do Quantum State Reconstruction

An experiment with 4 two-level atoms (each can be in quantum state 0 or 1)



The full system can be a superposition of all 16 possible states

The full state of this system is called the wavefunction

- 0 0 0 0
- 0 0 0 1
- 0 0 1 0
- 0 0 1 1
  - . . .

 $\Psi(a_1, a_2, a_3, a_4)$ 



### **Unsupervised learning can do Quantum State Reconstruction**

An experiment with 4 two-level atoms (each can be in quantum state 0 or 1)



Perform the experiment many times, and record which configuration we get

Question: can we learn  $\Psi(a_1, a_2, a_3, a_4)$ ?





### Unsupervised learning can do Quantum State Reconstruction





Trade a complex (impossible) measurement for many simple ones



## This is how we use ML for Quantum Physics



### www.netket.org

**Reinforcement Learning Correcting a quantum computer** 



**Controlling experiments** 



### Reinforcement learning is about strategies (policies)

MuZero (the successor to AlphaZero and AlphaGo)



Image Credit: DeepMind

### A simple quantum computer with one logical qubit



# A simple quantum computer with one logical qubit



The full state of all these qubits itself represents a "logical" qubit Simplification: all qubits 0 -> logical 0, all qubits 1 -> logical 1

## Qubit errors show up as red dots on the orange squares





## Qubit errors show up as red dots on the orange squares



We can \*<u>not</u>\* look at the flipped qubits, only the red dots!



# Multiple errors cause red dots to change position



Only an odd number of red flags is visible

# Red dots can (dis)appear at the edges



If this qubit flips from 0 to 1 too ...

# If a string of errors connects the edges, it is impossible to find out which qubits had errors



A whole column of qubits has errors, but we can't see it!



# So quantum error correction is like a board game!



### Given red dots, find out which qubits flipped (the errors)

Game over if a string of errors connects one edge to the other

## Reinforcement learning can do quantum error correction



### Use a neural network to determine which qubits flipped, given the current red dots



# These methods are not mutually exclusive

### A glimpse of the future?





# When does an ML approach make sense in physics?

Accaracy Only ever as accurate as the data (unless ML can also request new data?)

### Speed **Experimental/Computational Cost**



If qubit number 37 happens to be worse than the others, ML will learn that

#### Predict ground state properties vs Monte Carlo, or learn a quantum state quantummanybody.webflow.io

### Adaptiveness



#### https://arxiv.org/abs/1801.00862 Quantum Computing in the NISQ era and beyond John Preskill

#### Quantum games 6.11

Advances in classical computing launched a new world of digital games, touching the lives of millions and generating billions in revenue. Could quantum computers do the same? Physicists often say that the quantum world is counter-intuitive because it is so foreign to ordinary experience. That's true now, but might it be different in the future? Perhaps kids who grow up playing quantum games will acquire a visceral understanding of quantum phenomena that our generation lacks. Furthermore, quantum games could open a niche for quantum machine learning methods, which might seize the opportunity to improve game play in situations where quantum entanglement has an essential role.



# Quantum Games



### Quantum TiqTaqToe

www.quantumtictactoe.com

https://quantumfrontiers.com/2019/07/15/tiqtaqtoe/



www.quantumchess.net



# Quantum Games





#### "Anyone can Quantum"

# Thank you for participating!