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analog	computer	of	astronomical	
informa@on	
~	30	gears	
dated	to	150-100	BC

An@kythera	mechanism



Babbage Difference Engine
designed to tabulate polynomial functions
~ 1837
never built, due to lack of funding



IBM Automatic Sequence Controlled Calculator (ASCC)
1937



... the best results so far have been had 
with a non-metallic natural element, such 
as silicon, which possesses in a high 
degree the desired properties...



And	there	things	remained,	for	30	years



Some@mes,	progress	requires	understanding.



The	theory	of	a	new	kind	of	material:	the	semiconductor



1947.	The	revolu@on	begins



1958	–	Jack	Kiby	–	first	integrated	circuit

The solid-state revolution, continued



Moore’s Law



9	billion	transistors		
made	per	second





YouTube: “How Computers Add Numbers In One Lesson”



YouTube: “How a CPU Works”



What	was	bothering	these	men?









QuantaThe	quantum	age



electron waves

Particles also show interference (?!)



Quantum Circuits
small electronics at 
low temperatures



ONOFF

A transistor is a switch controlled by a voltage.

If the transistor can be in more than one state at a time, 
then it can control another switch that can be in more than 

one state at a time, etc.

Mesoscopic Electronics and Quantum Interference



...

|�� =

superposition as 
quantum 

parallelism



Quantum Entanglement:  “Spooky Action at a Distance”

|S⟩ |S⟩ = | ↑↓⟩ − | ↓↑⟩

helium



The Challenge

26
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The Response:
Same year, same title,
Radically different viewpoint.
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Polynomial-Time Algorithms for Prime Factorization

and Discrete Logarithms on a Quantum Computer∗

Peter W. Shor†

Abstract

A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with
an increase in computation time by at most a polynomial factor. This may not be
true when quantum mechanics is taken into consideration. This paper considers

factoring integers and finding discrete logarithms, two problems which are generally
thought to be hard on a classical computer and which have been used as the basis
of several proposed cryptosystems. Efficient randomized algorithms are given for

these two problems on a hypothetical quantum computer. These algorithms take
a number of steps polynomial in the input size, e.g., the number of digits of the
integer to be factored.

Keywords: algorithmic number theory, prime factorization, discrete logarithms,

Church’s thesis, quantum computers, foundations of quantum mechanics, spin systems,

Fourier transforms

AMS subject classifications: 81P10, 11Y05, 68Q10, 03D10

∗A preliminary version of this paper appeared in the Proceedings of the 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, NM, Nov. 20–22, 1994, IEEE Computer Society Press,
pp. 124–134.

†AT&T Research, Room 2D-149, 600 Mountain Ave., Murray Hill, NJ 07974.
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Quantum Algorithms - Putting Engtanglement to Work:
Factoring and Internet Security

15 = X5 3

4633 = X41 113

RSA-129



van Meter et al 2006
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Comparing quantum and classical computation











B Y  E L I Z A B E T H  G I B N E Y

The European Commission has quietly 
announced plans to launch a €1-billion 
(US$1.1-billion) project to boost a raft 

of quantum technologies — from secure com-
munication networks to ultra-precise gravity 
sensors and clocks. 

The initiative, to launch in 2018, will be sim-
ilar in size, timescale and ambition to the two 
existing European flagship projects, the dec-
ade-long Graphene Flagship and the Human 
Brain Project — although the exact format has 
yet to be decided, Nathalie Vandystadt, a com-
mission spokesperson, told Nature. Funding 
will come from a mix of sources, including the 
commission, as well as other European and 
national funders, she added.

The commission is likely to have a “sub-
stantial role” in funding the flagship, says 
Tommaso Calarco, who leads the Integrated 
Quantum Science and Technology centre at 
the Universities of Ulm and Stuttgart in Ger-
many. He co-authored a blueprint behind 
the initiative, which was published in March, 

called the Quantum Manifesto. Countries 
around the world are investing in these tech-
nologies, says Calarco — without such an  
initiative, Europe risks becoming a second-tier 
player. “The time is really now or never.”

On 19 April, the commission formally 
announced its intention to support the ini-
tiative. Confusingly, the project is included 
under plans to launch a cloud-computing 
portal called the European Open Science 
Cloud, even though the remit of the quantum 
project will extend far beyond computing. (In 
the same announcement, the commission said 
that it would spend €2 billion on the cloud-
computing initiative by 2020.) 

QUANTUM BUZZ
High-profile US companies are already 
investing in quantum computing, and Chinese 
scientists are nearing the completion of a 
2,000-kilometre-long quantum-communi-
cation link — the longest in the world — to 
send information securely between Beijing  
and Shanghai.

In Europe, the flagship is expected to fuel the 

development of such technologies, which the 
commission calls part of a “second quantum 
revolution” (the first was the unearthing of the 
rules of the quantum realm, which led to the 
invention of tools such as lasers and transistors).

The initiative will include support for rela-
tively near-to-market systems, such as quan-
tum-communication networks, ultra-sensitive 
cameras and quantum simulators that could 
help to design new materials. It will also look  
long term, pushing more-futuristic visions such 
as all-purpose quantum computers and high-
precision sensors that fit into mobile phones.

Success will be judged by how well the flag-
ship boosts industry take up of the technolo-
gies and seeds investment in the field, says 
Calarco: “If this doesn’t happen, it will be a 
failure. But everyone is very confident it will”.

Quantum-technology projects already exist 
in a few individual European Union countries, 
such as the UK Quantum Technologies Pro-
gramme and the Netherlands’ QuTech initiative, 
notes Marco Genovese, a quantum physicist at 
the Italian National Institute of Metrological 
Research in Turin. But to reach commercial 
level in the near future, an EU-wide initiative is 
essential, he says. “At the moment, EU industry 
is still only marginally involved,” he says.

Europe’s graphene and brain-project  
flagships were announced with great fanfare 
in 2013, after a multiyear competition, but the 
latest initiative has had a much quieter birth. 
Calarco says that it was driven by an 18-month 
dialogue between the commission and a 
group of researchers who, at the organization’s 
request, produced the manifesto.

Not everyone is pleased with this approach. 
Choosing flagships on the basis of bilateral 
discussions and manifestos risks turning them 
into “a competition of lobbying, rather than 
of arguments evaluated objectively in a fair 
competition of scientific ideas”, says Adrian 
Ionescu, a nanoscientist at the Swiss Federal 
Institute of Technology in Lausanne. (Ionescu 
led an unsuccessful shortlisted project in the 
2013 competition, called Guardian Angels for 
a Smarter Life, which would develop sensors 
to track environmental pollution and human 
health.) But the commission says that it is still 
running a separate consultation to identify 
candidates for future flagship projects, and 
that the quantum initiative does not prevent 
the launch of other flagships.

Genovese warns that the new project must 
be careful to avoid the problems faced by exist-
ing giant flagships, which included accusations 
of mismanagement and veering off course. 
“The building of the flagship must involve 
all the main research groups that have really 
significantly worked in the field through a 
bottom-up approach, and the concentration 
of power should be avoided,” he says.

The commission is set to announce more 
details at the Quantum Europe Conference in 
Amsterdam on 17–18 May, where the manifesto 
will be officially launched. ■

F U N D I N G

Billion-euro boost 
for quantum tech 
Third European Union flagship project will be similar in size 
and ambition to graphene and human-brain initiatives.

A €1-billion (US$1.1-billion) European flagship project could advance the state of quantum computing.
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Quantum computation with quantum dots

Daniel Loss1,2,* and David P. DiVincenzo1,3,†
1Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106-4030

2Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
3IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598

⇤Received 9 January 1997; revised manuscript received 22 July 1997⌅

We propose an implementation of a universal set of one- and two-quantum-bit gates for quantum compu-
tation using the spin states of coupled single-electron quantum dots. Desired operations are effected by the
gating of the tunneling barrier between neighboring dots. Several measures of the gate quality are computed
within a recently derived spin master equation incorporating decoherence caused by a prototypical magnetic
environment. Dot-array experiments that would provide an initial demonstration of the desired nonequilibrium
spin dynamics are proposed. ⇥S1050-2947⇤98⌅04501-6�

PACS number⇤s⌅: 03.67.Lx, 89.70.�c, 75.10.Jm, 89.80.�h

I. INTRODUCTION

The work of the past several years has greatly clarified
both the theoretical potential and the experimental challenges
of quantum computation ⇥1�. In a quantum computer the
state of each bit is permitted to be any quantum-mechanical
state of a qubit ⇤quantum bit, or two-level quantum system⌅.
Computation proceeds by a succession of ‘‘two-qubit quan-
tum gates’’ ⇥2�, coherent interactions involving specific pairs
of qubits, by analogy to the realization of ordinary digital
computation as a succession of Boolean logic gates. It is now
understood that the time evolution of an arbitrary quantum
state is intrinsically more powerful computationally than the
evolution of a digital logic state ⇤the quantum computation
can be viewed as a coherent superposition of digital compu-
tations proceeding in parallel⌅.

Shor has shown ⇥3� how this parallelism may be exploited
to develop polynomial-time quantum algorithms for compu-
tational problems, such as prime factoring, which have pre-
viously been viewed as intractable. This has sparked inves-
tigations into the feasibility of the actual physical
implementation of quantum computation. Achieving the con-
ditions for quantum computation is extremely demanding,
requiring precision control of Hamiltonian operations on
well-defined two-level quantum systems and a very high de-
gree of quantum coherence ⇥4�. In ion-trap systems ⇥5� and
cavity quantum electrodynamic experiments ⇥6�, quantum
computation at the level of an individual two-qubit gate has
been demonstrated; however, it is unclear whether such
atomic-physics implementations could ever be scaled up to
do truly large-scale quantum computation, and some have
speculated that solid-state physics, the scientific mainstay of
digital computation, would ultimately provide a suitable
arena for quantum computation as well. The initial realiza-
tion of the model that we introduce here would correspond to
only a modest step towards the realization of quantum com-
puting, but it would at the same time be a very ambitious
advance in the study of controlled nonequilibrium spin dy-

namics of magnetic nanosystems and could point the way
towards more extensive studies to explore the large-scale
quantum dynamics envisioned for a quantum computer.

II. QUANTUM-DOT IMPLEMENTATION

OF TWO-QUBIT GATES

In this paper we develop a detailed scenario for how
quantum computation may be achieved in a coupled
quantum-dot system ⇥7�. In our model the qubit is realized as
the spin of the excess electron on a single-electron quantum
dot; see Fig. 1. We introduce here a mechanism for two-
qubit quantum-gate operation that operates by a purely elec-

*Electronic address: loss@ubaclu.unibas.ch
†Electronic address: divince@watson.ibm.com

FIG. 1. ⇤a⌅ Schematic top view of two coupled quantum dots
labeled 1 and 2, each containing one excess electron (e) with spin
1/2. The tunnel barrier between the dots can be raised or lowered by
setting a gate voltage ‘‘high’’ ⇤solid equipotential contour⌅ or
‘‘low’’ ⇤dashed equipotential contour⌅. In the low state virtual tun-
neling ⇤dotted line⌅ produces a time-dependent Heisenberg ex-
change J(t). Hopping to an auxiliary ferromagnetic dot ⇤FM⌅ pro-
vides one method of performing single-qubit operations. Tunneling
(T) to the paramagnetic dot ⇤PM⌅ can be used as a POV read out
with 75% reliability; spin-dependent tunneling ⇤through ‘‘spin
valve’’ SV⌅ into dot 3 can lead to spin measurement via an elec-
trometer E. ⇤b⌅ Proposed experimental setup for initial test of swap-
gate operation in an array of many noninteracting quantum-dot
pairs. The left column of dots is initially unpolarized, while the
right one is polarized; this state can be reversed by a swap operation
⇥see Eq. ⇤31⌅�.
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Artificial Helium Atom - Hydrogen Molecule:
An entanglement generator
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sum of two gaussian peaks because part of the popu-
lation initially in the (1,1) state relaxes into the (0,2)
state during the integration time ⇤M, with the relaxation
time constant T1 [8]. The normalized number of events
n(Vrf) = N(Vrf)/

�⇥
�⇥N(Vrf)dVrf is modeled as

n(Vrf) = nS(Vrf) + nT (Vrf) (1)

with the events originating from singlet states nS(Vrf)
and from triplet states nT (Vrf). These are given by

nS(Vrf) = (1� ⌅PT ⇧) e�
(Vrf�V

(S)
rf )2

2�2
1⌃
2�⇥

(2)

nT (Vrf) = e�⇥M/T1⌅PT ⇧ e�(Vrf�V (T )
rf )2/(2�2) +

⇥ ⇥

�⇥

⇤M

T1

⌅PT ⇧
�Vrf

e�
V�V

(S)
rf

�Vrf

⇥M
T1 e�

(Vrf�V )2

2�2
dV⌃
2�⇥

(3)

with the triplet probability ⌅PT ⇧, averaged over all ⇤S.
The plot of Eq. (1) in Fig. 2(b) uses ⌅PT ⇧ = 0.5, T1 =
34 µs, and peak positions V (S)

rf , V (T )
rf , determined as de-

scribed below [Fig. 2(c,e)]. The width ⇥ [23] is obtained
from the control experiment.

The parameters T1 and ⌅PT ⇧ are extracted from the
raw data Vrf(⇤), which is plotted as a function of the
time ⇤ spent at point M in Fig. 2(c). Each data point
for ⇤ = 0.5� 15 µs, is averaged over all 7000 cycles with
varying ⇤S. The signal is fitted with [8]

Vrf(⇤) = V (S)
rf + ⌅PT ⇧�Vrf e�⇥/T1 (4)

using fit parameters T1 and ⌅PT ⇧. The singlet position
V (S)

rf and the peak spacing �Vrf [23] are fixed, as ob-
tained from a fit of the model Eq. (1) to the histogram for
⇤M = 15 µs [Fig. 2(e)]. For the fit of Eq. (1) the parame-
ters T1 and ⌅PT ⇧ are self-consistently fixed to the values
extracted from the raw data Vrf(⇤) [Eq. (4), Fig. 2(c)].

Maximizing the fidelity by optimization of the inte-
gration time ⇤M is a tradeo⇥ between increasing the sig-
nal to noise ratio ⇤ ⌃

⇤M and limiting relaxation during
⇤M. The histograms of single-shot outcomes ⌅Vrf⇧⇥M in
Fig. 2(d), for integration times ⇤M = 0.25 � 15 µs show
that the two peaks can no longer be clearly resolved for
⇤M < 1 µs while the relative height of the triplet peak
reduces with increasing ⇤M. Common benchmarks for
single-shot readout [24] are the fidelities FS , FT of sin-
glet, triplet measurement:

FS = 1�
⇥ ⇥

VT

nS(V )dV, FT = 1�
⇥ VT

�⇥
nT (V )dV. (5)

The integral in the expression for FS (FT ) is the proba-
bility to assign a singlet as a triplet (a triplet as a sin-
glet). Both quantities are combined to define the visibil-
ity V = FS + FT � 1. The fidelities and the visibility for
a single-shot measurement with ⇤M = 7 µs are calculated
from the data in Fig. 2(b) and plotted in Fig. 2(f) as

(a) (b)

(c)

VT

FIG. 3: (a) Single-shot outcomes ⇥Vrf⇤�M for 6000 cycles, puls-
ing to � = �S [Fig. 1(b)] for ⇥S, stepped by � 17 ns every 200
cycles. Points in the green (blue) region are above (below)
the threshold VT and assigned as triplet (singlet). (b) Single-
shot outcomes (gray markers) and triplet probabilities (black
circles) over ⇥S with three di�erent periods. (c) Rapid acqui-
sition of 108 PT traces at times t. PT is determined from 400
measurements per ⇥S.

a function of the threshold voltage VT. The maximum
visibility ⇥ 90% is achieved for VT slightly less than the
mean of V (T )

rf and V (S)
rf so that a triplet decaying towards

the end of ⇤M still gets counted correctly.
To determine the optimal values of ⇤M and VT the max-

imum visibility V max is calculated as a function of ⇤M

from Eq. (1) using the parameters T1, ⌅PT ⇧, determined
from Fig. 2(c), V (T )

rf and V (S)
rf , from Fig. 2(e) and ⇥(⇤M),

determined from the control experiment [23]. The thresh-
old VT for which the visibility is maximized is plotted to-
gether with V max in Fig. 2(g). The maximum visibility,
obtained for ⇤M ⇥ 6 µs, is V max � 90%.
The single-shot readout is applied to observe the evo-

lution of the singlet triplet qubit at point S [4], driven
by the di⇥erence in the hyperfine induced e⇥ective mag-
netic (Overhauser) field �Bnuc

z between the left and right
quantum dot. Single-shot outcomes ⌅Vrf⇧ are shown as a
function of ⇤S in Fig. 3(a) for a pulse sequence [Fig. 1(d)]
with ⇤S = 1� 500 ns stepped by 17 ns every 200 cycles,
for a total of 6000 consecutive cycles. Points that are
in the green (blue) region are above (below) the thresh-
old VT and are assigned as triplet (singlet) states. For
each ⇤S the triplet probability PT is the percentage of
single-shot outcomes above threshold. Probabilities PT

for the single-shot data in Fig. 3(a) are shown in the
top graph of Fig. 3(b) as a function of ⇤S. The two
graphs below show probability traces with identical pa-
rameters. Single-shot outcomes from which the proba-
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The gate fidelity and the coherence time of a quantum bit (qubit)
are important benchmarks for quantum computation. We con-
struct a qubit using a single electron spin in an Si/SiGe quantum
dot and control it electrically via an artificial spin-orbit field from a
micromagnet. We measure an average single-qubit gate fidelity of
∼99% using randomized benchmarking, which is consistent with
dephasing from the slowly evolving nuclear spins in the substrate.
The coherence time measured using dynamical decoupling extends
up to ∼400 μs for 128 decoupling pulses, with no sign of satura-
tion. We find evidence that the coherence time is limited by noise
in the 10-kHz to 1-MHz range, possibly because charge noise af-
fects the spin via the micromagnet gradient. This work shows that
an electron spin in an Si/SiGe quantum dot is a good candidate for
quantum information processing as well as for a quantum mem-
ory, even without isotopic purification.

Si/SiGe quantum dot | qubit | dynamical decoupling |
randomized benchmarking | electron spin

The performance of a quantum bit (qubit) is characterized by
how accurately operations on the qubit are implemented and

for how long its state is preserved. For improving qubit perfor-
mance, it is important to identify the nature of the noise that
introduces gate errors and leads to loss of qubit coherence. Ul-
timately, what counts is to balance the ability to drive fast qubit
operations and the need for long coherence times (1).
Electron spins in Si quantum dots are now known to be one of

the most promising qubit realizations for their potential to scale
up and their long coherence times (2–10). Using magnetic res-
onance on an electron spin bound to a phosphorus impurity in
isotopically purified 28Si (5) or confined in a 28Si metal–oxide–
semiconductor (MOS) quantum dot (3), ∼0.3-MHz Rabi fre-
quencies, gate fidelities over 99.5%, and spin memory times of
tens to hundreds of milliseconds have been achieved. Also,
electrical control of an electron spin has been demonstrated in a
(natural abundance) Si/SiGe quantum dot, which was achieved
by applying an AC electric field that oscillates the electron wave
function back and forth in the gradient magnetic field of a local
micromagnet (7). The advantage of electrical control over
magnetic control is that electric fields can be generated without
the need for microwave cavities or striplines and allows better
spatial selectivity, which simplifies individual addressing of
qubits. However, the magnetic field gradient also makes the
qubit sensitive to electrical noise, so it is important to examine
whether the field gradient limits the spin coherence time and the
gate fidelity.
In our previous work (7), the effect of electrical noise on spin

coherence and gate fidelity was overwhelmed by transitions be-
tween the lowest two valley-orbit states. Because different valley-
orbit states have slightly different Larmor frequencies, such a
transition will quickly randomize the phase of the electron spin.
If valley-orbit transitions can be (largely) avoided, then the
question becomes what limits coherence and fidelities instead.

Here we measure the gate fidelity and spin echo times for an
electron spin in an Si/SiGe quantum dot in a regime where the
electron stably remains in the lowest valley-orbit state for long
times, and where the corresponding resonance condition is well
separated from that associated with the other valley-orbit state.
To learn more about the dominant noise sources in this new
regime, we use dynamical decoupling experiments to extract the
noise spectrum in the range of 5 kHz to 1 MHz, and we compare
this spectrum with spectra derived from numerical simulations
for various noise sources. We also study the influence of the
various noise sources on the gate fidelity.

Device and Measurement Setup
A single electron spin is confined in a gate-defined quantum dot
in an undoped Si/SiGe heterostructure (6–8) (Fig. 1). The sam-
ple is attached to the mixing chamber (MC) stage of a dilution
refrigerator with base temperature of ∼25 mK, and subject to a
static external magnetic field of 794.4 mT along the direction as
indicated in Fig. 1, Inset. Spin rotations are achieved by applying
microwave excitation to one of the gates, which oscillates the
electron wave function back and forth in the magnetic field
gradient produced by two cobalt micromagnets fabricated on top
of the device. The device used in this work is the same as in the
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cannot be solved by a classical computer within a reasonable
time. The building block of a quantum computer is called a
quantum bit (qubit), the counterpart of the conventional bi-
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ronment, leading to errors in the qubit state. This article
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previous work (7), but the applied gate voltages are set differ-
ently to obtain a higher valley-orbit splitting.
The measurement scheme consists of four stages: initialization,

manipulation, readout, and emptying, as shown in ref. 7. Differ-
ently from ref. 7, the four-stage voltage pulse is applied to gate 8,
and the microwave excitation is applied to gate 3. The initializa-
tion and readout stages take 4 ms to 5 ms, and the manipulation
and emptying stages last 1 ms to 1.5 ms.
Because the experimental details of the setup are important

for the results shown in this paper, we here summarize the key
components. A voltage pulse applied to gate 8 is generated by an
arbitrary waveform generator (Tektronix AWG 5014C). Phase-
controlled microwave bursts are generated by an Agilent micro-
wave vector source E8267D with the I (in-phase) and Q (out-of-
phase) components controlled by two channels of the AWG. The
on/off ratio of the I/Q modulation is 40 dB. If the microwave
power arriving at the sample is not sufficiently suppressed in the
“off” state, the control fidelity is reduced and the effective elec-
tron temperature increases, which, in turn, will result in lower

readout and initialization fidelities. Reduced fidelities were in-
deed observed when applying high-power microwave excitation
(>15 dBm at the source) using I/Q modulation only. As a solution,
we use digital pulse modulation (PM) in series with the I/Q
modulation, which gives a total on/off ratio of ∼120 dB. A
drawback of PM is that the switching rate is lower. Therefore, the
PM is turned on 200 ns before the I/Q modulation is turned on
(Fig. 1, Inset). We also observe that the total microwave burst time
applied to the sample per cycle affects the readout and initiali-
zation fidelities (SI Appendix). To keep the readout and initiali-
zation fidelities constant, we apply an off-resonance microwave
burst (with microwave frequency detuned by 30 MHz from the
resonance frequency) 2 μs after the on-resonance microwave
burst, so that the combined duration of the two bursts is fixed. To
achieve this rapid shift of the microwave frequency, we used fre-
quency modulation (FM) controlled by another channel of the
AWG. FM is turned on 1 μs after the on-resonance burst is turned
off (Fig. 1, Inset).
The electron spin state is read out via spin-to-charge conversion

by aligning the Fermi level of the reservoir between the spin-down
and spin-up states and below the spin-up state combined with
real-time charge detection (11). The probability that the current
exceeds a predefined threshold during the readout stage is inter-
preted as the spin-up probability of the electron (7). The analysis
of the real-time traces and the statistical analysis of the readout
events are done on the fly using a field-programmable gate array
(FPGA) as depicted in Fig. 1; this allows us to measure faster
without waiting for the transfer of real-time traces to a computer.
Data points were taken by cycling through the various burst times,
spin echo waiting times, or randomized gate sequences, and re-
peating these entire cycles 250 to 1,000 times. This order of the
measurements helps to suppress artifacts in the data caused by
slow drift in the setup or sample.

High-Quality Rabi Oscillations
Rabi oscillations are recorded by varying the burst time and the
microwave frequency. With the present gate voltage settings, the
spin resonance frequencies corresponding to the two lowest
valley-orbit states are separated by ∼5 MHz (at Bext = 794.4 mT),
so that two well-separated chevron patterns characteristic for
Rabi oscillations are observed (Fig. 2A). This difference of
∼5 MHz results mainly from slightly different electron g factors
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Fig. 1. Device schematic and block diagram depicting the generation of gate
voltage pulses and phase-controlled microwave bursts, and readout trace
analysis and postanalysis using an FPGA. The false-color device image shows (in
the lower left at 20 mK) a fabricated pattern of split gates, labeled 1 to 12. For
this experiment, we create a single quantum dot (estimated location indicated
by a red circle) and a sensing dot. The spin state of the electron is read out by
monitoring the level of the sensing current I. Green semitransparent rectangles
show the position of two 200-nm-thick Co micromagnets. The yellow-shaded
areas show the location of two accumulation gates, one for the reservoirs and
another for the double quantum dot region. The main components of the
block diagram are described in Device and Measurement Setup. For the I/Q
inputs, 6-dB attenuators are added to reduce the noise from the AWG. To
reduce the noise going to the sample from the AWG, a Minicircuit low-pass
filter SLP-30+ and a 10-dB attenuator are added at room temperature. A
Pasternack DC block PE8224 is added at room temperature behind the mi-
crowave source to reduce low-frequency noise. The 30-dB attenuation at low
temperature is divided over a 20-dB attenuator at the 1-K plate and a 10-dB
attenuator at the MC stage for each of two high-frequency lines, connected to
gate 3 and gate 8. One of the two ohmic contacts of the sensing dot is con-
nected to a room-temperature voltage source, and the other is connected to
the input of a homemade junction gate field-effect transistor (JFET) current-to-
voltage (IV) converter via resistor–capacitor (RC) and copper powder filters
mounted at the MC stage and capacitor-input filters (pi filters) at room tem-
perature. The output voltage signal of the IV converter is digitized and pro-
cessed by an FPGA. A gating pulse sent to the FPGA defines the segment of the
signal that is to be analyzed. An additional trigger pulse is applied to the FPGA
before the entire sequence starts. (Inset) The voltage pulse applied to gate 8
(purple line), the pulses used for PM (green line), gating the FPGA (orange
line), I/Q modulation (light blue line), and FM (red line), and the microwave
burst applied to gate 3 (blue line) during the manipulation stage.
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Fig. 2. (A) Measured spin-up probability, P↑, as a function of fMW and burst
time tp [microwave (MW) power at the source P = 18.85 dBm], showing two
Rabi chevron patterns corresponding to the two valley-orbit states. The
resonance frequency of the valley-orbit ground state is 18.9795 GHz, and
that of the excited state is 18.9750 GHz. The signal coming from the excited
state is much smaller due to its lower population. (B) Measured spin-up
probability, P↑, showing a Rabi oscillation for the ground valley-orbit state
(blue circles). During the manipulation stage, on-resonance microwave ex-
citation (at fMW = 18.9795 GHz) was applied for a time tp, and off-resonance
microwave (fMW = 18.9195 GHz) was applied for a time t′p = 10 μs −tp, to keep
the total duration of the microwave bursts fixed to 10 μs for every data
point. The black line shows a numerical fit with a model that includes a
constant driving field in the rotating frame (which is a fit parameter) and
(quasi-)static noise modeled by a Gaussian distribution of resonance offsets
with width 0.63 MHz (FWHM).
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a b s t r a c t

A new approach for producing high-purity silicon with isotopic enrichment of 28Si isotope is reported.
The methods of centrifugal enrichment were modified to obtain the initial gaseous silicon tetrafluoride
with a record-breaking enrichment of 0.99999664(11) with respect to 28Si. The effective conversion of
silicon tetrafluoride into elementary silicon with minimal isotopic dilution was achieved in an electron
cyclotron resonance discharge plasma, sustained by gyrotron microwave radiation with a frequency of
24 GHz. We have experimentally demonstrated the deposition of the layers of microcrystalline 28Si with
enrichment of 0.999986 ± 0.000003, which is the best result at the present time.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Silicon is composed of three different isotopes 28Si (92.2%), 29Si
(4.7%), and 30Si (3.1%). In terms of control of isotopic composition of
semiconductor materials (‘‘isotope engineering’’ according to [1])
it means that the natural silicon consisting of first and foremost of
28Si species has the concentration of ‘‘physical’’ impurities 29Si and
30Si equal to a huge number of 8%. That is why many properties of
silicon depending on isotopic composition (linewidth of the optical
transitions [2], phonon frequencies and lifetime, lattice constant,
thermal conductivity etc.) are essentially masked. Remarkable ad-
vances in obtaining high-enrichment and high-purity silicon iso-
topes have emerged in the last decade. First of all, the production of
∼5 kg of a 28Si single crystal with an enrichment factor of 0.999949

∗ Corresponding author. Tel.: +7 831 4164652; fax: +7 831 4160616.
E-mail addresses: mda1981@appl.sci-nnov.ru, mansfeld@yandex.ru

(D.A. Mansfeld).

should be noted [3,4]. Besides the metrological application of en-
riched 28Si material for a new definition of the mass unit kilogram,
highly enriched silicon isotopes with the atomic mass numbers
28, 29 and 30 refer to essentially new materials required for the
solutions at least of the following important scientific and tech-
nical problems: (1) solid state spectroscopy; (2) spintronics and
quantum computers; (3) cooling of SYS-optics; (4) micro- and na-
noelectronics; (5) SLSs and terahertz lasers. The review of some
important results obtained in these fields can be found in [3,5]. It
became clear from the obtained results that essentially the im-
provement of analyticalmethods in the Avogadro project aswell as
progress in observation of extremely narrow lines of P and B bound
excitons [2], having amajor impact on quantum information appli-
cation [6] (readout reliability and achievable hyper-polarization),
would be possible by using silicon with isotopic enrichment which
is higher by an order of magnitude, i.e., by producing 0.99999 28Si.

In fact this challenge requires modification or replacement
of all steps of 28Si production: the retuning of the centrifugal
cascade for extremely high SiF4 enrichment, development of a
high-accuracymass-spectrometry (MS) analysis method of the gas

0038-1098/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ssc.2012.01.008
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We show that the combination of spin-orbit coupling with a Zeeman field or strong interactions may

lead to the formation of a helical electron liquid in single-channel quantum wires, with spin and velocity

perfectly correlated. We argue that zero-energy Majorana bound states are formed in various situations

when such wires are situated in proximity to a conventional s-wave superconductor. This occurs when the
external magnetic field, the superconducting gap, or, most simply, the chemical potential vary along the

wire. These Majorana states do not require the presence of a vortex in the system. Experimental

consequences of the helical liquid and the Majorana states are also discussed.
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States of matter supporting Majorana fermions (MFs)
have received much attention in the context of quantum
computation. A widely separated pair of MF bound states
forms a nonlocal fermionic state immune to local sources
of decoherence, thus providing a platform for fault-tolerant
quantum memory. Moreover, since MF states realize a
representation of the non-Abelian braid group, topological
quantum information processing can, in principle, be af-
fected by braiding [1]. A realization of such states where
they can be readily manipulated is therefore highly
desirable.

There are several suggestions for physical systems that
support MF states, for ways to measure their properties and
manipulate them. These include fractional quantum Hall
states at filling ! ¼ 5=2 [2], p-wave superconductors [3],
surfaces of 3D topological insulators proximate to a super-
conductor [4], superfluids in the 3He-B phase [5,6], and
helical edge modes of 2D topological insulators proximate
to a ferromagnet and a superconductor [7]. Recently, it was
suggested that a semiconducting thin film sandwiched
between an s-wave superconductor and a magnetic insula-
tor [8] will host MF states associated with superconducting
vortices. All of these proposals are extremely challenging
experimentally.

Realizing and manipulating MFs in wires may be deci-
sively simpler. We show that quantum wires with strong
spin-orbit coupling, e.g., InAs or InSb wires, and banded
carbon nanotubes, form a helical liquid, akin to topological
insulator edges. Consequently, these wires support MF
states when in proximity to s-wave superconductors, and
a magnetic field. Unlike their 2D counterparts, wire-MF
states do not require the presence of a vortex in the system,
eliminating decoherence arising from low lying vortex-
core quasiparticle states. Most importantly, we explain
how to produce and manipulate them by variations of a
chemical potential, which could be simply produced by a
set of micron-sized gates capacitatively coupled to the

wire. Below we outline the key physical properties of
MF states in quantum wires, their experimental signatures,
and how to construct networks, enabling quantum infor-
mation processing.
Without loss of generality, let the wire lie along the y

axis, the spin-orbit interaction, u, be along the z axis, and a
magnetic field B be along the x axis. Also, the wire is in
contact with a superconductor, with proximity strength !
(chosen real). The Hamiltonian is [4]

H ¼
Z

"yðyÞH"ðyÞdy; "y ¼ ðc y
" ; c

y
# ; c #;$c "Þ

H ¼ ½p2=2m$"ðyÞ&#z þ up$z#z þ BðyÞ$x þ !ðyÞ#x:
(1)

c ";ð#ÞðyÞ annihilates spin-up (down) electrons at position y.
The Pauli matrices $, # operate in spin and particle-hole
space, respectively. " is the chemical potential.
Zeeman field and superconducting proximity absent, the

Hamiltonian (1) has an energy-momentum dispersion con-
sisting of two shifted parabolas crossing at momentum
p ¼ 0. The Zeeman field B removes the level crossing
and opens a gap at p ¼ 0. (Such a gap may also occur
due to strong electron-electron interactions [9,10], and
therefore B should be generally construed as either a
magnetic field perpendicular to the spin-orbit coupling,
or an interaction induced gap.) The pairing ! opens a
gap at the dispersion’s outer wings (regardless of the
Zeeman field’s strength when strong spin-orbit coupling
is present), which eliminates high-momentum excitations,
thus leaving only the chiral states near p ¼ 0 as low energy
excitation, which resemble the edge of a topological
insulator [4,10]. ! also affects these states, which allows
us to tune the topological phase transitions essential for the
production of MFs. Note that gapping out the high-
momentum excitation can be done by coupling our system
to an antiferromagnet with periodicity comparable to 2kF,
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or using interactions to open a!kF pairing gap for! away
from the gap at p ¼ 0 [11].

The spectrum for constant!, u, !, and B, is revealed by
squaring H twice, which yields

E2
! ¼ B2 þ!2 þ "2

p þ ðupÞ2

! 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2!2 þ B2"2

p þ ðupÞ2"2
p

q
; (2)

where "p ¼ p2=2m&!. Figure 1 shows examples of the
spectrum. A linear vanishing and reopening gap when
B, !, ! vary indicates a topological phase transition. We
denote the gaps near p ¼ 0 and near the Fermi momenta
corresponding to "p ! up ¼ 0 as E0 and E1, respectively.

The p ¼ 0 gap, E0, is the key to the emergence of the
MF states. Examining E& at p ¼ 0 we notice that

E0 ¼ Eðp ¼ 0Þ ¼ jB&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ!2

q
j: (3)

For B2 > !2 þ!2, E0 is a B-dominated (or strong
interaction induced) gap; the wire is in its topological
phase, with MF states at the wire’s ends [12]. When B2 <
!2 þ!2 the gap is pairing dominated, with no end states;
when B2 ¼ !2 þ!2 a quantum phase transition occurs.
The gap E1 near p2 ¼ 2!m remains a finite pairing gap
throughout, since ! always stays finite.
The phase transition evident in E0 allows Majorana

states to form. These can be achieved in various ways since
E0 depends on B, !, and !. As in 2D topological insulator
edges [4], a MF bound state forms when B changes spa-
tially and crosses !, e.g., at y ¼ 0 [cf. Fig. 2(b)], or when
! varies and crosses B [cf. Fig. 2(d)].
Here we emphasize a third possibility: varying the

chemical potential !. E.g., consider B>! so that for

! ¼ 0 we have a B-dominated gap E0. But when !>ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 & !2

p
, the gap E0, Eq. (3), is pairing dominated. Thus,

we can form a MF state by tuning ! between these values
[cf. Fig. 2(c)]. Notice that changes in ! hardly influence
the gap E1, so states ' !kF do not play a role.
In 1D we can explore MF states formation where their

wave functions can be obtained essentially exactly.
Consider, e.g., a long ring with one conducting channel,
in proximity to a superconductor and a Zeeman field, as in
Fig. 2(a). Since the relevant momenta are near p ¼ 0,
below we use the Hamiltonian linearized in that region:

H ¼ up#z$z &!ðyÞ$z þ BðyÞ#x þ !ðyÞ$x: (4)

This approximation requires B ( mu2. The MF states
obtained below, however, are present regardless of the
Zeeman splitting to spin-orbit coupling ratio.
Spatially varying B.—Assume !> 0 is constant,

! ¼ 0, and that B> ! for y > 0 and B< ! for y < 0
[Fig. 2(b); the periodic boundary conditions require
another point where B ¼ !]. Near the crossing point
y ¼ 0, we write BðyÞ ¼ !þ by. Because of particle-hole
symmetry, it is useful to square H ; In addition to the
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FIG. 1 (color online). (a) Single-particle spectrum for ! ¼
B ¼ ! ¼ 0. (The two shadings denote the different spin com-
ponents.) The energy (momentum) scale is set by mu2=2
(by mu), with u the spin-orbit coupling strength. (b) Excitation
spectrum of adding or removing an electron for ! ¼ B ¼
! ¼ 0. (c) Excitation spectrum for B ¼ 1=4, ! ¼ ! ¼ 0 where
a gap due to the Zeeman term opens near p ¼ 0. (d) B ¼ 2:5,
! ¼ 1=2, ! ¼ 0 with a superconducting gap in the wings and a
B dominated gap near the origin. This situation is analogous
to a p-wave superconductor. We refer to this phase as the
‘‘B dominated phase’’ (e) B ¼ 1=4 ¼ ! ¼ 1=4, ! ¼ 0. The
gap near p ¼ 0 closes, the gap at finite p persists. At this critical
point a quantum phase transition occurs. (f) B ¼ 1=4, ! ¼ 0:3,
! ¼ 0. All gaps in the excitation spectrum are controlled by !.
(g) B ¼ 1=4, ! ¼ :1, ! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 &!2

p
¼

ffiffiffiffiffiffi
21

p
=20. The gap at

p ¼ 0 closes due to the shift in chemical potential. (h) A super-
conducting gap opens up in the entire spectrum due to the shift
of the chemical potential above its critical value ! ¼ 1=10,
B ¼ 1=4, ! ¼ 0:3.
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FIG. 2 (color online). (a) Wire in a ring geometry. Both halves
have constant parameters and are joined by short junctions with a
linearly varying parameter. MF states (marked by circles) are
formed at the junctions. (b) MF state in the sector p ¼ 0 when B
varies. The gap in the finite-p sector remains finite in the entire
wire. (c) MF state in the sector p ¼ 0 when ! varies. (d) MF
state in the sector p ¼ 0 when ! varies. (e) ‘‘p wave’’ MF state
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entire wire. Each crossing with ! ¼ 0 hosts two MF states.
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or using interactions to open a!kF pairing gap for! away
from the gap at p ¼ 0 [11].

The spectrum for constant!, u, !, and B, is revealed by
squaring H twice, which yields

E2
! ¼ B2 þ!2 þ "2

p þ ðupÞ2

! 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2!2 þ B2"2

p þ ðupÞ2"2
p

q
; (2)

where "p ¼ p2=2m&!. Figure 1 shows examples of the
spectrum. A linear vanishing and reopening gap when
B, !, ! vary indicates a topological phase transition. We
denote the gaps near p ¼ 0 and near the Fermi momenta
corresponding to "p ! up ¼ 0 as E0 and E1, respectively.

The p ¼ 0 gap, E0, is the key to the emergence of the
MF states. Examining E& at p ¼ 0 we notice that

E0 ¼ Eðp ¼ 0Þ ¼ jB&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ!2

q
j: (3)

For B2 > !2 þ!2, E0 is a B-dominated (or strong
interaction induced) gap; the wire is in its topological
phase, with MF states at the wire’s ends [12]. When B2 <
!2 þ!2 the gap is pairing dominated, with no end states;
when B2 ¼ !2 þ!2 a quantum phase transition occurs.
The gap E1 near p2 ¼ 2!m remains a finite pairing gap
throughout, since ! always stays finite.
The phase transition evident in E0 allows Majorana

states to form. These can be achieved in various ways since
E0 depends on B, !, and !. As in 2D topological insulator
edges [4], a MF bound state forms when B changes spa-
tially and crosses !, e.g., at y ¼ 0 [cf. Fig. 2(b)], or when
! varies and crosses B [cf. Fig. 2(d)].
Here we emphasize a third possibility: varying the

chemical potential !. E.g., consider B>! so that for

! ¼ 0 we have a B-dominated gap E0. But when !>ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 & !2

p
, the gap E0, Eq. (3), is pairing dominated. Thus,

we can form a MF state by tuning ! between these values
[cf. Fig. 2(c)]. Notice that changes in ! hardly influence
the gap E1, so states ' !kF do not play a role.
In 1D we can explore MF states formation where their

wave functions can be obtained essentially exactly.
Consider, e.g., a long ring with one conducting channel,
in proximity to a superconductor and a Zeeman field, as in
Fig. 2(a). Since the relevant momenta are near p ¼ 0,
below we use the Hamiltonian linearized in that region:

H ¼ up#z$z &!ðyÞ$z þ BðyÞ#x þ !ðyÞ$x: (4)

This approximation requires B ( mu2. The MF states
obtained below, however, are present regardless of the
Zeeman splitting to spin-orbit coupling ratio.
Spatially varying B.—Assume !> 0 is constant,

! ¼ 0, and that B> ! for y > 0 and B< ! for y < 0
[Fig. 2(b); the periodic boundary conditions require
another point where B ¼ !]. Near the crossing point
y ¼ 0, we write BðyÞ ¼ !þ by. Because of particle-hole
symmetry, it is useful to square H ; In addition to the
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conducting gap opens up in the entire spectrum due to the shift
of the chemical potential above its critical value ! ¼ 1=10,
B ¼ 1=4, ! ¼ 0:3.
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squared, and the mixed B! terms, a term fup!z"z; B!xg ¼
i!y"zu½p; B# ¼ !y"zub arises because B depends on
space and does not anticommute with the spin-orbit cou-
pling term. Collecting all terms, we have

H 2
b ¼ ðupÞ2 þ BðyÞ2 þ !2 þ ub!y"z þ 2!BðyÞ!x"x:

(5)

RotatingH 2
b byU

y
b ¼ 1=2ð"z ' i"x ' i!x"z þ !x"xÞ, we

find that UbH 2
bU

y
b is diagonal with components ðupÞ2 þ

ð!( BÞ2 ( ub. The interesting modes are those with a
minus sign in the brackets, !' B. They correspond to
an harmonic oscillator with ground-state wave function
’ðyÞ ¼ ðb=ðu#Þ1=4Þe'by2=ð2uÞ and energies E2

n ¼ 2ubðnþ
1=2Þ ( ub; n ¼ 0; 1; 2; . . . . For b > 0, the minus sign
yields a zero-energy state with Bogoliubov operator

$y
b ¼ $b ¼

1ffiffiffi
2

p ð%1 ' %2Þ ¼
1

2
ðc " ' ic # þ ic y

# þ c y
" Þ;

%1 ¼ 1=
ffiffiffi
2

p
ðc y

" þ c "Þ; %2 ¼ 1=ð
ffiffiffi
2

p
iÞðc y

# ' c #Þ: (6)
The MF state at the second crossing point along the ring
follows by b ! 'b. Thus, this zero-energy state is Eþ

0 ¼ 0
with MF operator 'i=

ffiffiffi
2

p
ð%1 þ %2Þ.

Spatially varying !.—Here we assume !ðyÞ ¼ Bþ dy,
& ¼ 0, and B constant [Fig. 2(c)]. The Hamiltonian here
resembles the y-dependent B case, if we exchange " and !
in Eqs. (4) and (5). Therefore, the MF states emerge here in
exactly the same way as above, except with the diagonal-
izing matrices being Uy

d ¼ Uy
b ð" $ !Þ, and b ! d and

! ! B in the resulting wave function. This yields (for
positive d) $d ¼ $y

d ¼ ð%1 ' %2Þ=
ffiffiffi
2

p
.

Spatially varying &.—If B> ! everywhere, then at the
interface between B-dominated regions with&2<B2'!2

and pairing gap regions with &2 >B2 ' !2, a MF state
also forms [Fig. 2(d)]. Here we assume that & jumps
abruptly at y ¼ 0 between &‘ for y < 0, and &r at y > 0.
The condition for the MF state to form is

&2
‘ < B2 ' !2; &2

r > B2 '!2: (7)

Matching the wave function at y ¼ 0 and using the ansatz
c r / e'kry for y > 0 and c l / ekly for y < 0 we find

H ¼'ð"ðyÞkr'"ð'yÞklÞiu"z!z'&"z

þB!xþ!"x¼0 (8)

where ukr;ðlÞ( ¼ !(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 '&2

ðlÞr
q

and the eigenvectors

c rðlÞ
( ¼ e'ðþÞkrðlÞ(yð1; e(i'rðlÞ ; i;'ie(i'rðlÞ ÞT=2 (9)

with cos'rðlÞ ¼ &rðlÞ=B. One can easily verify that c rðlÞ )
# ¼ ðc rðlÞ )#Þy are MF operators, with c a c number.
Thus, the wave function c ðyÞ of the MF state is

2isin'rc
ð0Þ‘
' y<0

ðe'i'l 'e'i'rÞc ð0Þr
þ þðei'r 'e'i'lÞc ð0Þr

' y>0;
(10)

exhausting all possibilities for isolated MF states.

We note that whenE0 is a B dominated gap, the gapE1 is
due to pairing between spin-up electrons for positive p and
spin-down electrons for negative p, reminiscent of a one-
dimensional p-wave superconductor [13]. Recalling that
vortices of a p-wave superconductor support a zero-energy
bound state [2,8,14], we expect the formation of MF states
when ! changes sign [Fig. 2(e)]. Because of the broken
azimuthal symmetry, however, two inseparable MF states
form where ! vanishes.
Next we discuss experimental realizations. To be

feasible, our proposal main requirement is a sufficiently
strong spin-orbit interaction in a conducting single-channel
wire weakly coupled to a superconductor. Previous experi-
mental and the theoretical works describe different aspects
of spin-orbit coupling in wires [15].
Several candidate systems for spin-orbit coupled wires

exist. In carbon nanotubes, spin-orbit coupling arises
due to curvature effects [16]. Here it is preferable to have
a strong spin-orbit coupling along the direction of propa-
gation, requiring that the tube is bent along its axis.
Alternatively, one can use a strong electric field perpen-
dicular to the axis. A more promising candidate is a wire of
InAs in the wurtzite structure, known to have strong spin-
orbit coupling [17]. The velocity u in the Hamiltonian
equation (1) is related to the experimentally measured
length scale (S0 ¼ 100 nm ¼ mu and !SO ¼ 250 &V ¼
mu2=2 via u* @2!SO(SO + 7:6, 106 cm= sec and
m ¼ @2=(2

SO2! ¼ 0:015me, with me the free electron
mass. Similar numbers (with ! ¼ 280 &V) describe
newly fabricated InSb wires, except with a large g factor
of*50, compared to g* 8 in InAs, requiring only a small,
relatively innocuous to the SC, magnetic field [18].
Our wire-MF states can be formed by spatial variations

of the Zeeman field, the proximity-induced superconduc-
tivity, or, most importantly, the chemical potential, and will
form near points where B2 ' ð&2 þ !2Þ ¼ 0. A varying
chemical potential, as in Fig. 2(d), e.g., can be achieved by
gate electrodes capacitatively coupled to the wire. Note
that as long as the chemical potential gradients are slow
compared to (SO, the separate treatment of the large mo-
mentum wings, and linearization of the p ¼ 0 region are
valid. Tunneling experiments should provide the most
direct signatures of the MFs [19].
Additional experimental signatures arise by controlling

the phase of the pairing ! and the chemical potential. In
particular, the configuration of Fig. 3 allows controlling
!’s phase on the left ()‘), center ()c), and right ()r)
sections independently. The total Josephson current flow-
ing between the three superconducting segments is rather
intricate, and will be discussed in a separate publication.
Since the MFs are localized when the distance between
them, L, is infinite the Josephson current due to the MFs is
zero. A straightforward first-order perturbation analysis for
finite L yields the energy splittings between the two MF
states on the domain walls (cf. Ref. [20]). We find the
Josephson energy associated with the MFs to be
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or using interactions to open a!kF pairing gap for! away
from the gap at p ¼ 0 [11].

The spectrum for constant!, u, !, and B, is revealed by
squaring H twice, which yields

E2
! ¼ B2 þ!2 þ "2

p þ ðupÞ2

! 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2!2 þ B2"2

p þ ðupÞ2"2
p

q
; (2)

where "p ¼ p2=2m&!. Figure 1 shows examples of the
spectrum. A linear vanishing and reopening gap when
B, !, ! vary indicates a topological phase transition. We
denote the gaps near p ¼ 0 and near the Fermi momenta
corresponding to "p ! up ¼ 0 as E0 and E1, respectively.

The p ¼ 0 gap, E0, is the key to the emergence of the
MF states. Examining E& at p ¼ 0 we notice that

E0 ¼ Eðp ¼ 0Þ ¼ jB&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ!2

q
j: (3)

For B2 > !2 þ!2, E0 is a B-dominated (or strong
interaction induced) gap; the wire is in its topological
phase, with MF states at the wire’s ends [12]. When B2 <
!2 þ!2 the gap is pairing dominated, with no end states;
when B2 ¼ !2 þ!2 a quantum phase transition occurs.
The gap E1 near p2 ¼ 2!m remains a finite pairing gap
throughout, since ! always stays finite.
The phase transition evident in E0 allows Majorana

states to form. These can be achieved in various ways since
E0 depends on B, !, and !. As in 2D topological insulator
edges [4], a MF bound state forms when B changes spa-
tially and crosses !, e.g., at y ¼ 0 [cf. Fig. 2(b)], or when
! varies and crosses B [cf. Fig. 2(d)].
Here we emphasize a third possibility: varying the

chemical potential !. E.g., consider B>! so that for

! ¼ 0 we have a B-dominated gap E0. But when !>ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 & !2

p
, the gap E0, Eq. (3), is pairing dominated. Thus,

we can form a MF state by tuning ! between these values
[cf. Fig. 2(c)]. Notice that changes in ! hardly influence
the gap E1, so states ' !kF do not play a role.
In 1D we can explore MF states formation where their

wave functions can be obtained essentially exactly.
Consider, e.g., a long ring with one conducting channel,
in proximity to a superconductor and a Zeeman field, as in
Fig. 2(a). Since the relevant momenta are near p ¼ 0,
below we use the Hamiltonian linearized in that region:

H ¼ up#z$z &!ðyÞ$z þ BðyÞ#x þ !ðyÞ$x: (4)

This approximation requires B ( mu2. The MF states
obtained below, however, are present regardless of the
Zeeman splitting to spin-orbit coupling ratio.
Spatially varying B.—Assume !> 0 is constant,

! ¼ 0, and that B> ! for y > 0 and B< ! for y < 0
[Fig. 2(b); the periodic boundary conditions require
another point where B ¼ !]. Near the crossing point
y ¼ 0, we write BðyÞ ¼ !þ by. Because of particle-hole
symmetry, it is useful to square H ; In addition to the

2 1 1 2

1

1

E
p

p

a
B 0

1 2

1

E
p

p

b
B 0

1 2

1

E
p

p

c
0 B 1 4 0

1 2

1

E
p

p

d
0.1 B 1 4 0

1 2

1

E
p

p

e
1 4 B 1 4 0

1 2

1

E
p

p

f
0.3 B 1 4 0

1 2

1

E
p

p

g

1 10 B 1 4
21 20

1 2

1

E
p

p

h

1 10 B 1 4
.3

FIG. 1 (color online). (a) Single-particle spectrum for ! ¼
B ¼ ! ¼ 0. (The two shadings denote the different spin com-
ponents.) The energy (momentum) scale is set by mu2=2
(by mu), with u the spin-orbit coupling strength. (b) Excitation
spectrum of adding or removing an electron for ! ¼ B ¼
! ¼ 0. (c) Excitation spectrum for B ¼ 1=4, ! ¼ ! ¼ 0 where
a gap due to the Zeeman term opens near p ¼ 0. (d) B ¼ 2:5,
! ¼ 1=2, ! ¼ 0 with a superconducting gap in the wings and a
B dominated gap near the origin. This situation is analogous
to a p-wave superconductor. We refer to this phase as the
‘‘B dominated phase’’ (e) B ¼ 1=4 ¼ ! ¼ 1=4, ! ¼ 0. The
gap near p ¼ 0 closes, the gap at finite p persists. At this critical
point a quantum phase transition occurs. (f) B ¼ 1=4, ! ¼ 0:3,
! ¼ 0. All gaps in the excitation spectrum are controlled by !.
(g) B ¼ 1=4, ! ¼ :1, ! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 &!2

p
¼

ffiffiffiffiffiffi
21

p
=20. The gap at

p ¼ 0 closes due to the shift in chemical potential. (h) A super-
conducting gap opens up in the entire spectrum due to the shift
of the chemical potential above its critical value ! ¼ 1=10,
B ¼ 1=4, ! ¼ 0:3.
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FIG. 2 (color online). (a) Wire in a ring geometry. Both halves
have constant parameters and are joined by short junctions with a
linearly varying parameter. MF states (marked by circles) are
formed at the junctions. (b) MF state in the sector p ¼ 0 when B
varies. The gap in the finite-p sector remains finite in the entire
wire. (c) MF state in the sector p ¼ 0 when ! varies. (d) MF
state in the sector p ¼ 0 when ! varies. (e) ‘‘p wave’’ MF state
when ! changes sign. The sector p ¼ 0 remains gapped in the
entire wire. Each crossing with ! ¼ 0 hosts two MF states.
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or using interactions to open a!kF pairing gap for! away
from the gap at p ¼ 0 [11].

The spectrum for constant!, u, !, and B, is revealed by
squaring H twice, which yields

E2
! ¼ B2 þ!2 þ "2

p þ ðupÞ2

! 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2!2 þ B2"2

p þ ðupÞ2"2
p

q
; (2)

where "p ¼ p2=2m&!. Figure 1 shows examples of the
spectrum. A linear vanishing and reopening gap when
B, !, ! vary indicates a topological phase transition. We
denote the gaps near p ¼ 0 and near the Fermi momenta
corresponding to "p ! up ¼ 0 as E0 and E1, respectively.

The p ¼ 0 gap, E0, is the key to the emergence of the
MF states. Examining E& at p ¼ 0 we notice that

E0 ¼ Eðp ¼ 0Þ ¼ jB&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ!2

q
j: (3)

For B2 > !2 þ!2, E0 is a B-dominated (or strong
interaction induced) gap; the wire is in its topological
phase, with MF states at the wire’s ends [12]. When B2 <
!2 þ!2 the gap is pairing dominated, with no end states;
when B2 ¼ !2 þ!2 a quantum phase transition occurs.
The gap E1 near p2 ¼ 2!m remains a finite pairing gap
throughout, since ! always stays finite.
The phase transition evident in E0 allows Majorana

states to form. These can be achieved in various ways since
E0 depends on B, !, and !. As in 2D topological insulator
edges [4], a MF bound state forms when B changes spa-
tially and crosses !, e.g., at y ¼ 0 [cf. Fig. 2(b)], or when
! varies and crosses B [cf. Fig. 2(d)].
Here we emphasize a third possibility: varying the

chemical potential !. E.g., consider B>! so that for

! ¼ 0 we have a B-dominated gap E0. But when !>ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 & !2

p
, the gap E0, Eq. (3), is pairing dominated. Thus,

we can form a MF state by tuning ! between these values
[cf. Fig. 2(c)]. Notice that changes in ! hardly influence
the gap E1, so states ' !kF do not play a role.
In 1D we can explore MF states formation where their

wave functions can be obtained essentially exactly.
Consider, e.g., a long ring with one conducting channel,
in proximity to a superconductor and a Zeeman field, as in
Fig. 2(a). Since the relevant momenta are near p ¼ 0,
below we use the Hamiltonian linearized in that region:

H ¼ up#z$z &!ðyÞ$z þ BðyÞ#x þ !ðyÞ$x: (4)

This approximation requires B ( mu2. The MF states
obtained below, however, are present regardless of the
Zeeman splitting to spin-orbit coupling ratio.
Spatially varying B.—Assume !> 0 is constant,

! ¼ 0, and that B> ! for y > 0 and B< ! for y < 0
[Fig. 2(b); the periodic boundary conditions require
another point where B ¼ !]. Near the crossing point
y ¼ 0, we write BðyÞ ¼ !þ by. Because of particle-hole
symmetry, it is useful to square H ; In addition to the
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B ¼ ! ¼ 0. (The two shadings denote the different spin com-
ponents.) The energy (momentum) scale is set by mu2=2
(by mu), with u the spin-orbit coupling strength. (b) Excitation
spectrum of adding or removing an electron for ! ¼ B ¼
! ¼ 0. (c) Excitation spectrum for B ¼ 1=4, ! ¼ ! ¼ 0 where
a gap due to the Zeeman term opens near p ¼ 0. (d) B ¼ 2:5,
! ¼ 1=2, ! ¼ 0 with a superconducting gap in the wings and a
B dominated gap near the origin. This situation is analogous
to a p-wave superconductor. We refer to this phase as the
‘‘B dominated phase’’ (e) B ¼ 1=4 ¼ ! ¼ 1=4, ! ¼ 0. The
gap near p ¼ 0 closes, the gap at finite p persists. At this critical
point a quantum phase transition occurs. (f) B ¼ 1=4, ! ¼ 0:3,
! ¼ 0. All gaps in the excitation spectrum are controlled by !.
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p ¼ 0 closes due to the shift in chemical potential. (h) A super-
conducting gap opens up in the entire spectrum due to the shift
of the chemical potential above its critical value ! ¼ 1=10,
B ¼ 1=4, ! ¼ 0:3.
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when ! changes sign. The sector p ¼ 0 remains gapped in the
entire wire. Each crossing with ! ¼ 0 hosts two MF states.
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Figure 6. (a) Basic architecture required to stabilize a topological superconducting state in a 1D spin–orbit-coupled wire. (b) Band
structure for the wire when time-reversal symmetry is present (red and blue curves) and broken by a magnetic field (black curves). When the
chemical potential lies within the field-induced gap at k = 0, the wire appears ‘spinless’. Incorporating the pairing induced by the proximate
superconductor leads to the phase diagram in (c). The endpoints of topological (green) segments of the wire host localized, zero-energy
Majorana modes as shown in (d).

structure in the limit where h = 0. Due to spin–orbit coupling,
the blue and red parabolas respectively correspond to electronic
states whose spin aligns along +y and−y. Clearly no ‘spinless’
regime is possible here—the spectrum always supports an even
number of pairs of Fermi points for any µ. The magnetic field
remedies this problem by lifting the crossing between these
parabolas at k = 0, producing band energies

ϵ±(k) = k2
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− µ ±

√
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sketched by the solid black curves of figure 6(b). When the
Fermi level resides within this field-induced gap (e.g. for µ

shown in the figure) the wire appears ‘spinless’ as desired.
The influence of the superconducting proximity effect on

this band structure can be intuitively understood by focusing
on this ‘spinless’ regime and projecting away the upper
unoccupied band, which is legitimate provided # ≪ h.
Crucially, because of competition from spin–orbit coupling
the magnetic field only partially polarizes electrons in the
remaining lower band as figure 6(b) indicates schematically.
Turning on # weakly compared with h then effectively
p-wave pairs these carriers, driving the wire into a topological
superconducting state that connects smoothly to the weak-
pairing phase of Kitaev’s toy model (see [34] for an explicit
mapping).

More formally, one can proceed as we did for the
topological insulator edge and express the full, unprojected
Hamiltonian in terms of operators ψ†

±(k) that add electrons
with energy ϵ±(k) to the wire. The resulting Hamiltonian
is again given by equations (57) and (58) (but with v →
α and band energies ϵ±(k) from equation (67)), explicitly
demonstrating the intraband p-wave pairing mediated by #.
Furthermore, equation (60) provides the quasiparticle energies
for the wire with proximity-induced pairing and again yields
a gap that vanishes only when h =

√
#2 + µ2. For fields

below this critical value the wire no longer appears ‘spinless’,
resulting in a trivial state, while the topological phase emerges
at higher fields,

h >
√

#2 + µ2 (topological criterion). (68)

Figure 6(c) summarizes the phase diagram for the wire. Note
that this is inverted compared with the topological insulator

edge phase diagram in figure 5(d). This important distinction
arises because the k2/(2m) kinetic energy for the wire causes
an upturn in the lower band of figure 6(b) at large |k|, thereby
either adding or removing one pair of Fermi points relative to
the edge band structure.

Since a wire in its topological phase naturally forms a
boundary with a trivial state (the vacuum), Majorana modes
γ1 and γ2 localize at the wire’s ends when the inequality
in equation (68) holds. Majorana-trapping domain walls
between topological and trivial regions can also form at the
wire’s interior by applying gate voltages to spatially modulate
the chemical potential [34, 117] or by driving supercurrents
through the adjacent superconductor [102] (using the same
mechanism discussed in section 3.2). Figure 6(d) illustrates
an example where four Majoranas form due to a trivial region
in the center of a wire.

It is useful address how one optimizes the 1D wire setup
to streamline the route to experimental realization of this
proposal. This issue is subtle, counterintuitive, and difficult
even to define precisely given several competing factors.
First, how well should the wire hybridize with the parent
superconductor? The naive guess that the hybridization should
ideally be as large as theoretically possible to maximize the
pairing amplitude # imparted to the wire is incorrect. One
practical issue is that exceedingly good contact between the
two subsystems may lead to an enormous influx of electrons
from the superconductor into the wire, pushing the Fermi level
far above the Zeeman-induced gap of figure 6(b) where the
topological phase arises. Restoring the Fermi level to the
desired position by gating will then be complicated by strong
screening from the superconductor.

Reference [93] emphasized a more fundamental issue
related to the optimal hybridization. The topological phase’s
stability is determined not only by the pairing gap induced at
the Fermi momentum, EkF ∝ #, but also the field-induced
gap at zero momentum, E0 = |h −

√
#2 + µ2|, required

to open a ‘spinless’ regime. The minimum excitation gap
for the topological phase is set by the smaller of these two
energies. As reviewed in section 3.1, increasing the tunneling
& between the wire and superconductor indeed enhances #

but simultaneously reduces the Zeeman energy h. From the
effective action in equation (49) we explicitly have h = Zhbare

and # = (1 − Z)#sc, where hbare is the Zeeman energy for
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structure for the wire when time-reversal symmetry is present (red and blue curves) and broken by a magnetic field (black curves). When the
chemical potential lies within the field-induced gap at k = 0, the wire appears ‘spinless’. Incorporating the pairing induced by the proximate
superconductor leads to the phase diagram in (c). The endpoints of topological (green) segments of the wire host localized, zero-energy
Majorana modes as shown in (d).
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Figure 2 |Applying a ‘keyboard’ of individually tunable gates to the wire
allows local control of which regions are topological (dark blue) and
non-topological (light blue), and hence manipulate Majorana fermions
while maintaining the bulk gap. As a and b illustrate, sequentially applying
the leftmost gates drives the left end of the wire non-topological, thereby
transporting �1 rightward. Nucleating a topological section of the wire from
an ordinary region or vice versa creates pairs of Majorana fermions out of
the vacuum as in c. Similarly, removing a topological region entirely or
connecting two topological regions as sketched in d fuses Majorana
fermions into either the vacuum or a finite-energy quasiparticle.

length Lgate of the wire.When a given gate locally tunes the chemical
potential across |µ| = µc, a finite excitation gap Egap ⇥ h̄v⇡/Lgate
remains. (Roughly, the gate creates a potential well that supports
only k larger than ⇥⇡/Lgate.) Assuming gµB|Bz |/2 ⇥ 2|⇧| and
h̄u⇥ 0.1 eVÅ yields a velocity v ⇥ 104 m s�1; the gap for a 0.1 µm
wide gate is then of order 1 K. We consider this a conservative
estimate—heavy-element wires such as InSb and/or narrower gates
could generate substantially larger gaps.

Local gates allow Majorana fermions to be transported, created,
and fused, as outlined in Fig. 2. As one germinates pairs of Majorana
fermions, the ground state degeneracy increases, as does our capac-
ity to topologically store quantum information. Specifically, 2nMa-
joranas generate n ordinary zero-energy fermions, with occupation
numbers that specify topological qubit states. Adiabatically braiding
the Majorana fermions to manipulate these qubits, however, is
impossible in a single wire. Thus we now turn to the simplest
arrangement permitting exchange—the T-junction of Fig. 3.

Majorana braiding and non-Abelian statistics
First, we explore the properties of the junction where the wires in
Fig. 3 meet (see the Supplementary Information for more details).
It is instructive to view the T-junction as three segments meeting
at a point. When only one segment realizes a topological phase, a
single zero-energy Majorana fermion exists at the junction. When
two topological segments meet at the junction, as in Fig. 3a and
b, generically no Majorana modes exist there. To see this, imagine
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Figure 3 |A T-junction provides the simplest wire network that enables
meaningful adiabatic exchange of Majorana fermions. Using the methods
of Fig. 2, one can braid Majoranas bridged by either a topological region
(dark blue lines) as in a–d, or a non-topological region (light blue lines) as
in e–h. The arrows along the topological regions in a–d are useful for
understanding the non-Abelian statistics, as outlined in the main text.

decoupling the topological segments so that two nearby Majorana
modes exist at the junction; restoring the coupling generically
combines theseMajoranas into an ordinary, finite-energy fermion.

As an illustrative example, consider the setup of Fig. 3a and
model the left and right topological segments byKitaev’smodelwith
µ = 0 and t = |⇧| in equation (1). (For simplicity we exclude the
non-topological vertical wire in Fig. 3a.) Suppose furthermore that
⇤ = ⇤L/R in the left/right chains and that the fermion cL,N at site N
of the left chain couples weakly to the fermion cR,1 at site 1 of the
right chain via H⌅ = �⌅(cL,N †cR,1 +h.c .). Using equation (2), the
Majoranas at the junction couple as follows,

H⌅ ⇥ � i⌅
2
cos

�
⇤L �⇤R

2

⇥
� L
B,N� R

A,1 (6)

and therefore generally combine into an ordinary fermion23.
An exception occurs when the regions form a ⇡-junction—
that is, when ⇤L � ⇤R = ⇡—which fine-tunes their coupling
to zero. Importantly, coupling between end Majoranas in the
semiconductor context is governed by the same⇤L�⇤R dependence
as in equation (6) (refs 21,22).

Finally, when three topological segments meet, again only
a single Majorana mode exists at the junction without fine-
tuning. Three Majorana modes appear only when all pairs of
wires simultaneously form mutual ⇡ junctions (which is possible
because the superconducting phases are defined with respect to
a direction in each wire; see the Supplementary Information).
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length Lgate of the wire.When a given gate locally tunes the chemical
potential across |µ| = µc, a finite excitation gap Egap ⇥ h̄v⇡/Lgate
remains. (Roughly, the gate creates a potential well that supports
only k larger than ⇥⇡/Lgate.) Assuming gµB|Bz |/2 ⇥ 2|⇧| and
h̄u⇥ 0.1 eVÅ yields a velocity v ⇥ 104 m s�1; the gap for a 0.1 µm
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estimate—heavy-element wires such as InSb and/or narrower gates
could generate substantially larger gaps.
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fermions, the ground state degeneracy increases, as does our capac-
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joranas generate n ordinary zero-energy fermions, with occupation
numbers that specify topological qubit states. Adiabatically braiding
the Majorana fermions to manipulate these qubits, however, is
impossible in a single wire. Thus we now turn to the simplest
arrangement permitting exchange—the T-junction of Fig. 3.

Majorana braiding and non-Abelian statistics
First, we explore the properties of the junction where the wires in
Fig. 3 meet (see the Supplementary Information for more details).
It is instructive to view the T-junction as three segments meeting
at a point. When only one segment realizes a topological phase, a
single zero-energy Majorana fermion exists at the junction. When
two topological segments meet at the junction, as in Fig. 3a and
b, generically no Majorana modes exist there. To see this, imagine
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decoupling the topological segments so that two nearby Majorana
modes exist at the junction; restoring the coupling generically
combines theseMajoranas into an ordinary, finite-energy fermion.

As an illustrative example, consider the setup of Fig. 3a and
model the left and right topological segments byKitaev’smodelwith
µ = 0 and t = |⇧| in equation (1). (For simplicity we exclude the
non-topological vertical wire in Fig. 3a.) Suppose furthermore that
⇤ = ⇤L/R in the left/right chains and that the fermion cL,N at site N
of the left chain couples weakly to the fermion cR,1 at site 1 of the
right chain via H⌅ = �⌅(cL,N †cR,1 +h.c .). Using equation (2), the
Majoranas at the junction couple as follows,

H⌅ ⇥ � i⌅
2
cos

�
⇤L �⇤R

2

⇥
� L
B,N� R

A,1 (6)

and therefore generally combine into an ordinary fermion23.
An exception occurs when the regions form a ⇡-junction—
that is, when ⇤L � ⇤R = ⇡—which fine-tunes their coupling
to zero. Importantly, coupling between end Majoranas in the
semiconductor context is governed by the same⇤L�⇤R dependence
as in equation (6) (refs 21,22).

Finally, when three topological segments meet, again only
a single Majorana mode exists at the junction without fine-
tuning. Three Majorana modes appear only when all pairs of
wires simultaneously form mutual ⇡ junctions (which is possible
because the superconducting phases are defined with respect to
a direction in each wire; see the Supplementary Information).
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could generate substantially larger gaps.
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decoupling the topological segments so that two nearby Majorana
modes exist at the junction; restoring the coupling generically
combines theseMajoranas into an ordinary, finite-energy fermion.

As an illustrative example, consider the setup of Fig. 3a and
model the left and right topological segments byKitaev’smodelwith
µ = 0 and t = |⇧| in equation (1). (For simplicity we exclude the
non-topological vertical wire in Fig. 3a.) Suppose furthermore that
⇤ = ⇤L/R in the left/right chains and that the fermion cL,N at site N
of the left chain couples weakly to the fermion cR,1 at site 1 of the
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and therefore generally combine into an ordinary fermion23.
An exception occurs when the regions form a ⇡-junction—
that is, when ⇤L � ⇤R = ⇡—which fine-tunes their coupling
to zero. Importantly, coupling between end Majoranas in the
semiconductor context is governed by the same⇤L�⇤R dependence
as in equation (6) (refs 21,22).

Finally, when three topological segments meet, again only
a single Majorana mode exists at the junction without fine-
tuning. Three Majorana modes appear only when all pairs of
wires simultaneously form mutual ⇡ junctions (which is possible
because the superconducting phases are defined with respect to
a direction in each wire; see the Supplementary Information).
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Eeven or odd ¼ "=2"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"=2Þ2 þ v2 & 2jv1v2j sinð’1=2Þ

q
;

(8)

where v2 ¼ jv1j2 þ jv2j2 and ’1 ¼ 2Argðv1=v2Þ. The
phase difference is controlled by the flux !1 and up to
constant phase shift, we can write ’1 ¼ !1=!0, with !1

being the flux in loop 1 and!0 ¼ h=2e. Note that Eq. (8) is
4! periodic in ’1 [27].

Again, consider an adiabatic process that transfers an
electron from a dot but this time to the two Majorana states
"1 and "2. Unlike the case with a single MBS, the resulting
rotation of the Majorana system is in general not indepen-
dent of the time spend in the adiabatic process, because of
the energy difference in Eq. (8), see Fig. 2(b). The degen-
eracy is restored only when the phase difference is ’1 ¼
2n! (n integer), which therefore requires tuning the mag-
netic flux!1 [Fig. 2(a)]. At this degeneracy point, v1=v2 is
real which allows the Hamiltonian to be written as

H12 ¼ "~cy~cþ vð~cy " ~cÞ"12; (9)

where a new Majorana operator is defined

"12 ¼
1

v
ðjv1j"1 þ jv2j"2Þ; (10)

and where a common phase is absorbed into the dot-
electron operator ~c ¼ c exp½iArgðv1Þ(. Thus, since the
Hamiltonian (9) has the same form as (3), a dot coupled
to two MBSs reduces (at the degeneracy point) to a dot
coupled to a single Majorana state "12. The conclusion
from above therefore also carries over: by adiabatically
changing the electron number of the dot, the following
rotation is performed

P12:jii ! "12jii: (11)

To understand the rotations that can be generated by
repeated applications of P12 (with different ratios jv1=v2j),
we use the following Pauli matrixes acting on the two level
system spanned by "1 and "2: #x ¼ "1, #y ¼ "2, and
#z ¼ "i"1"2. In this language, the operation P12 makes
a ! rotation around an axis in the x-y plane, but other
rotation angles around lines in the x-y plane cannot
be done. In contrast, when applying a pair P12P

0
12 ¼

ðu"1þv"2Þðu0"1þv0"2Þ ¼ ðuu0þvv0Þþ iðuv0"vu0Þ#z

a rotation around the z axis with tunable angle is per-
formed. A braid operation also rotates around the z axis,
but by an angle restricted to!=2. Instead, using four MBSs
and the even-parity subspace to define a qubit [20], a
universal set of single qubit rotations is in fact generated
by pairs of P operators. Again, P12P

0
12 is a rotation around

the z axis [in the basis fð00Þ; ð11Þg defined below], whereas
P23P

0
23 now gives a rotation around the x axis with a

controllable angle [28].
A special and illuminating case is when the dots couple

with equal strength to two MBSs [jv1j ¼ jv2j in Eq. (10)],
which results in operators Fi ¼ 1ffiffi

2
p ð"i þ "jþ1Þ acting

on nearest neighbors. They are related to braid operators
Bi ¼ 1ffiffi

2
p ð1þ "iþ1"iÞ [26] by Bi ¼ Fi"i ¼ "iþ1Fi. The Fi

operators fulfill F2
i ¼ 1 and

FiFj ¼ "FjFi; ji" jj> 1 (12a)

FiFiþ1Fi ¼ "Fiþ1FiFiþ1; (12b)

which differs by a minus sign from the relations defining
the braid group [1]. As a side remark, Fi form a projective
representation of the permutation group [29].
To demonstrate the non-Abelian nature of the tunnel-

braid operations, consider now an explicit example with
four Majorana states and three dots. The state of the
superconductor is initialized by tuning the dots and the
magnetic field to fuse Majorana pairs (1, 2) and (3, 4) and
letting them relax. The initial state is j00i ¼ j0iM12j0iM34,
referring to the occupation of the fermions, d1 ¼ ð"1 þ
i"2Þ=2 and d2 ¼ ð"3 þ i"4Þ=2. We will consider applica-
tions of pairs of Fi and hence restrict to the subspace
of even parity, spanned by j00i and j11i ¼ dy2d

y
1 j00i. The

possible unitary transformations are given by

ðF1F2Þeven ¼ ½ðF2F3Þeven(T ¼ 1ffiffiffi
2

p
"
1 "i
1 i

#
; (13)

FIG. 2 (color online). (a) A one-dimensional array of
Majorana states (M1; . . . ;Mn) coupled to quantum dots (D1,
D2,. . .) in the Coulomb blockade regime. Each dot is tunnel
coupled to two Majorana states with tunnel barriers [controlled
by the gates adjacent to the plunger gates (G1, G2,. . .)].
Changing the occupancy of the dots by one electron creates
the unitary rotations Pij. (b) The ground-state energy of one dot
coupled to two Majorana bound states, with jv1j ¼ jv2j for even
(red) and odd (blue) total parity of a dot and its two connecting
MBSs. Even and odd cases are degenerated for ’1 ¼ 2n!,
which makes the Pij operations partially protected. The full
and dashed lines are for "=jv1j ¼ 0 and 2, respectively.
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Figure 2. Panel a): Minimal circuit for flux-controlled demonstration of non-Abelian Majorana statistics. Two large supercon-
ducting plates form a Cooper pair box in a transmission line resonator, i.e. a transmon qubit. Three smaller superconducting
islands are embedded between the two transmon plates. Each superconducting island contains a nanowire supporting two
Majorana bound states. At low energies, the three overlapping Majorana bound states at a T-junction form a single zero mode
so that e↵ectively the system hosts six Majorana bound states, labeled �

A

, �
B

, �
C

, �
D

, �
E

, and �
F

. The Coulomb couplings
between the Majorana fermions can be controlled with magnetic fluxes �

k

. This hybrid device can measure the result of the
braiding operation as a shift in the microwave resonance frequency when the fermion parity i�

A

�
B

switches between even and
odd. Panel b): Sequence of variation of fluxes during the initialization (steps 0–2), braiding (steps 3–8) and measurement (step
9). Panel c): Illustration of the steps required for initialization, braiding and measurement. To unambiguously demonstrate the
non-Abelian nature of Majoranas, one needs to collect statistics of measurement outcomes when the adiabatic cycle describing
the braiding operation (steps 3–8) is repeated n times between initialization and measurement. The probabilities of observing
changes in the cavity’s resonance frequency, p

flip

, for di↵erent values of n should obey the predictions summarized in the table.
The sequence of probabilities shown in the table repeats itself periodically for larger values of n.

a universal set of quantum gates and allows measurement
of any product of Pauli matrices belonging to a selection
of topological qubits. Multi-qubit parity measurements
are a powerful resource in quantum information process-
ing, allowing for the e�cient creation of long-range entan-
glement and direct measurement of stabilizer operators
(thus removing the overhead of ancilla qubits in quan-
tum error correction schemes). Because the data stored
in the register can be accessed in any random order, it
truly represents a Random Access Majorana Memory.

The structure of the paper is as follows. In Sec. I we
present the circuit that can demonstrate the non-Abelian
Majorana statistics. In Sec. II we take a longer-term
perspective and describe the Random Access Majorana
Memory, whose potential for quantum computation is
discussed in Sec. III. Finally, we conclude in Sec. IV.

For the benefit of the reader, we include more detailed
derivations and discussions in the Appendices.

I. MINIMAL CIRCUIT FOR THE
DEMONSTRATION OF NON-ABELIAN

STATISTICS

To demonstrate non-Abelian Majorana statistics one
needs to read out the parity of two Majoranas, �

A

and
�
B

, and braid one of these Majoranas �
B

with another
one, �

C

. We seek a transmon circuit that can combine
these operations in a fully flux-controlled way, by acting
on the Coulomb coupling of the Majoranas. Since �

B

must be coupled first to one Majorana (for the braiding)
and then to another (for the readout), it must be able

5

that the dependence of the Coulomb coupling on the flux
is governed by macroscopic electrical properties (capaci-
tance of the island, resistance of the Josephson junction).
Tunnel couplings, in contrast, require microscopic input
(separation of the Majorana fermions on the scale of the
Fermi wave length), so they tend to be more di�cult to
control.

Both Ref. [18] and the present proposal share the fea-
ture that the gap of the topological superconductor is not
closed during the braiding operation. (The measurement-
based approach to braiding also falls in this category
[25].) Two other proposals [17, 19] braid the Majorana’s
by inducing a topological phase transition (either by elec-
trical or by magnetic means) in parts of the system. Since
the excitation gap closes at the phase transition, this may
be problematic for the required adiabaticity of the oper-
ation.

The braiding operation is called topologically pro-
tected, because it depends on the o↵/on sequence of
the Coulomb couplings, and not on details of the tim-
ing of the sequence. As in any physical realization of a
mathematical concept, there are sources of error. Non-
adiabaticity of the operation is one source of error, stud-
ied in Ref. [26]. Low-lying sub-gap excitations in the
superconducting island break the adiabatic evolution by
transitions which change the fermion parity of the Majo-
rana’s.

Another source of error, studied in Appendix B, is gov-
erned by the o↵/on ratio U

min

/U
max

of the Coulomb
coupling. This ratio depends exponentially on the ra-
tio of the charging energy EC and the Josephson en-
ergy EJ of the junction to the bulk superconductor. A
value EJ/EC ' 50 is not unrealistic [7], corresponding
to U

min

/U
max

' 10�5.

The sign of the Coulomb coupling in the on state
can be arbitrary, as long as it does not change during
the braiding operation. Since U

max

/ cos(⇡q
ind

/e), any
change in the induced charge by ±e will spoil the opera-
tion. The time scale for this quasiparticle poisoning can
be milliseconds [27], so this does not seem to present a
serious obstacle.

A universal quantum computation using Majorana
fermions requires, in addition to braiding, the capabil-
ities for single-qubit rotation and read-out of up to four
Majorana’s [1]. The combination of Ref. [8] with the
present proposal provides a scheme for all three opera-
tions, based on the interface of a topological qubit and
a superconducting charge qubit. This is not a topolog-
ical quantum computer, since single-qubit rotations of
Majorana fermions lack topological protection. But by
including the topologically protected braiding operations
one can improve the tolerance for errors of the entire
computation by orders of magnitude (error rates as large
as 10% are permitted [9]).

A sketch of a complete device is shown in Fig. 5.

FIG. 5: Josephson junction array containing Majorana
fermions. The magnetic flux through a split Josephson junc-
tion controls the Coulomb coupling on each superconducting
island. This device allows one to perform the three types of
operations on topological qubits needed for a universal quan-
tum computer: read-out, rotation, and braiding. All opera-
tions are controlled magnetically, no gate voltages are needed.
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Appendix A: Derivation of the Majorana-Coulomb
Hamiltonian

1. Single island

Considering first a single island, we start from the
Cooper pair box Hamiltonian (2) with the parity con-
straint (5) on the eigenstates. Following Ref. [21], it is
convenient to remove the constraint by the unitary trans-
formation

H̃ = ⌦†H⌦, ⌦ = exp[i(1� P)�/4]. (A1)

The transformed wave function  ̃(�) = ⌦† (�) is then
2⇡-periodic, without any constraint. The parity operator
P appears in the transformed Hamiltonian,

H̃ =
1

2C

�
Q+ 1

2

e(1� P) + q
ind

�
2 � EJ cos�. (A2)

For a single junction the parity is conserved, so eigen-
states of H are also eigenstates of P and we may treat
the operator P as a number. Eq. (A2) is therefore the
Hamiltonian of a Cooper pair box with e↵ective induced
charge q

e↵

= q
ind

+ e(1 � P)/2. The expression for the
ground state energy in the Josephson regime EJ � EC

van Heck, et al.

3

Figure 1. Examples of systems allowing implementation of a Kitaev chain.
(a) A chain of QDs in a 2DEG. The QDs are connected to each other, and
to superconductors (labeled SC), by means of quantum point contacts (QPCs).
The first and the last dots are also coupled to external leads. The normal state
conductance of QPCs between adjacent dots or between the end dots and the
leads is Gk, and of the QPCs linking a dot to a superconductor is G?. The
confinement energy inside each QD can be controlled by varying the potential
Vgate. (b) Realization of the same setup using a nanowire, with the difference that
each dot is coupled to two superconductors in order to control the strength of the
superconducting proximity effect without the use of QPCs.

separated by gate-controlled tunnel barriers, and all the tuning can be done by gates, except
for the coupling to a superconductor. This coupling, in turn, can be controlled by coupling two
superconductors to each dot and applying a phase difference to these superconductors. The
layout of a nanowire implementation of our proposal is shown in figure 1(b).

This geometry has the advantage of eliminating many of the problems mentioned above.
By using single-level QDs, and also quantum point contacts (QPCs) in the tunneling regime,
we solve issues related to multiple transmitting modes. Additional problems, such as accidental
closings of the induced superconducting gap due to disorder, are solved because our setup allows
us to tune the system to a point where the topological phase is most robust, as we will show.

We present a step-by-step tuning procedure which follows the behavior of the system in
parallel to that expected for the Kitaev chain. As feedback required to control every step we
use the resonant Andreev conductance, which allows us to track the evolution of the system’s
energy levels. We expect that the step-by-step structure of the tuning algorithm should eliminate
the large number of non-Majorana explanations of the zero bias peaks.
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In topological quantum computation, quantum information is stored in states which are intrinsically
protected from decoherence, and quantum gates are carried out by dragging particlelike excitations
(quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories
define world lines in three-dimensional space-time, and the corresponding quantum gates depend only on
the topology of the braids formed by these world lines. We show how to find braids that yield a universal
set of quantum gates for qubits encoded using a specific kind of quasiparticle which is particularly
promising for experimental realization.
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We study multiband semiconducting nanowires proximity coupled with an s-wave superconductor and calculate
the topological phase diagram as a function of the chemical potential and magnetic field. The nontrivial topological
state corresponds to a superconducting phase supporting an odd number of pairs of Majorana modes localized at
the ends of the wire, whereas the nontopological state corresponds to a superconducting phase with no Majoranas
or with an even number of pairs of Majorana modes. Our key finding is that multiband occupancy not only
lifts the stringent constraint of one-dimensionality, but also allows having higher carrier density in the nanowire.
Consequently, multiband nanowires are better suited for stabilizing the topological superconducting phase and for
observing the Majorana physics. We present a detailed study of the parameter space for multiband semiconductor
nanowires focusing on understanding the key experimental conditions required for the realization and detection
of Majorana fermions in solid-state systems. We include various sources of disorder and characterize their effects
on the stability of the topological phase. Finally, we calculate the local density of states as well as the differential
tunneling conductance as functions of external parameters and predict the experimental signatures that would
establish the existence of emergent Majorana zero-energy modes in solid-state systems.

DOI: 10.1103/PhysRevB.84.144522 PACS number(s): 74.78.Na, 71.10.Pm, 74.20.Rp, 74.45.+c

I. INTRODUCTION

The search for Majorana fermions has become an active
and exciting pursuit in condensed-matter physics.1–4 Majorana
fermions, particles which are their own antiparticles, were
originally envisioned by Majorana in 19375 in the context of
particle physics (i.e., the physics of neutrinos). However, the
current search for Majorana particles is mostly taking place in
condensed-matter systems,6,7 where Majorana quasiparticles
appear in electronic systems as a result of fractionalization
and as emergent modes occupying nonlocal zero energy
states. The nonlocality of these modes provides the ability
to exchange and manipulate fractionalized quasiparticles and
leads to non-Abelian braiding statistics.8–14 Hence, in addition
to being of paramount importance for fundamental physics,
this property of the Majoranas places them at the heart of
topological quantum computing schemes.13,15–29 We mention
that solid-state systems, where the Majorana mode emerges
as a zero-energy state of an effective (but realistic) low-
energy Hamiltonian, enable the realization of the Majorana
operator itself, not just of the Majorana particle. Consequently,
Majorana physics in solid-state systems is, in fact, much
more subtle than originally envisioned by Majorana in 1937.
For example, in condensed-matter systems the nonlocal non-
Abelian topological nature of the Majorana modes that are of
interest to us is a purely emergent property.

About 10 years ago, Read and Green9 discovered that
Majorana zero-energy modes can appear quite naturally in
two-dimensional (2D) chiral p-wave superconductors where
these quasiparticles, localized at the vortex cores, correspond
to an equal superposition of a particle and a hole. A year
later, Kitaev11 introduced a very simple toy model for a 1D
Majorana quantum wire with localized Majorana zero-energy
modes at the ends. Both these proposals involve spinless
p-wave superconductors where one can explicitly demonstrate
the existence of Majorana zero-energy modes by solving
the corresponding mean-field Hamiltonian. Recently, several

groups30,31 suggested a way to engineer spinless p-wave
superconductors in the laboratory using a combination of
strong spin-orbit coupling and superconducting proximity
effect, thus opening the possibility of realizing Majorana
fermions in solid-state systems to the experimental field. The
basic idea of the semiconductor/superconductor proposal31

is that the interplay of spin-orbit interaction, s-wave super-
conductivity and Zeeman spin splitting could, in principle,
lead to a topological superconducting phase with localized
zero-energy Majorana modes in the semiconductor. Since
then, there have been many proposals for realizing solid-state
Majoranas in various superconducting heterostructures.30–45

Among them, the most promising ones involve quasi-1D
semiconductor nanowires with strong spin-orbit interaction
proximity-coupled with an s-wave superconductor.37,38,40 The
main advantage of this proposal is its simplicity: It does
not require any specialized new materials but rather involves
a conventional semiconductor with strong Rashba coupling
such as InAs or InSb, a conventional superconductor such
as Al or Nb, and an in-plane magnetic field. High-quality
semiconductor nanowires can be epitaxially grown (see, for
example, Ref. 46 for InAs and Ref. 47 for InSb) and are known
to have a large spin-orbit interaction strength α as well as large
Lande g factor [gInAs ∼ 10–25 (Ref. 48) and gInSb ∼ 20–70
(Ref. 47)]. Furthermore, these materials are known to form
interfaces that are highly transparent for electrons, allowing
one to induce a large superconducting gap ".49–51 Thus,
semiconductor nanowires show great promise for realizing and
observing Majorana particles.6,7 It is important to emphasize
that in the superconductor-semiconductor heterostructures the
Majorana mode is constructed or engineered to exist as a
zero-energy state, and as such, it should be experimentally
observable in the laboratory under the right conditions.

In a strictly 1D nanowire in contact with a superconductor,
the condition for driving the system into a topological
superconducting phase37,38 is |Vx | >

√
"2 + µ2, where Vx is
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FIG. 28. (Color online) Typical spectra for a trivial SC with N =
0 (red squares), a topological SC with N = 1 (orange diamonds), and
a trivial SC with N = 2 (black circles). The system is characterized
by µ = 54.5Eα , θ = 0.8, and γ = $0. The finite energy in-gap states
(for % = 15Eα and % = 45Eα) together with the Majorana zero
modes are localized near the ends of the wire (see also Fig. 12),
while the rest of the states extend throughout the entire system. The
corresponding LDOS is shown in Fig. 29.

nontrivial (N odd) topologies (see the phase diagram in Fig. 9).
Of major practical interest are the first two phases (N = 0 and
N = 1), as stronger Zeeman fields involve smaller gaps (see
Fig. 10) or may destroy superconductivity altogether. Typical
spectra from the first three phases (N = 0,1,2) are shown in
Fig. 28 and the corresponding LDOS is shown in Fig. 29.

The main conclusion suggested by the results shown in
Fig. 29 is that clear-cut evidence for the existence of the
Majorana zero modes can be obtained by driving the system
from a trivial SC phase with N = 0 to a topological SC state
with N = 1 by tuning the Zeeman field. In the trivial SC
phase there is a well-defined gap for all excitations, including
states localized near the ends of the wire. By contrast, the
topological SC phase is characterized by sharp zero-energy
peaks localized near the ends of the wire and separated from
all other excitations (including possible localized in-gap states)
by a well-defined minigap.

Is it possible to clearly distinguish the two phases with
different topologies in the presence of disorder? The answer
is provided by the results shown in Fig. 30 for a nanowire
with charged impurities. In contrast with the clean case, all
the low-energy states are strongly localized. Nonetheless, the
signature features of the two phases (the gaps and the zero-
energy peaks) are preserved. At this point we emphasize two
critical properties:

(i) The features illustrated in Fig. 30 are generic; that is, they
do not depend on the type or the source of disorder. Similar
LDOS can be generated using any other significant type of

FIG. 29. (Color online) LDOS for a clean nanowire in three
different phases: trivial SC phase with N = 0 (% = 15Eα , top),
topological SC phase with N = 1 (% = 25Eα , middle), and trivial SC
phase with N = 2 (% = 45Eα , bottom). The corresponding spectra
are shown in Fig. 28. Notice the finite energy in-gap states localized
near the ends of the wire (top and bottom) and the zero-energy
Majorana modes (middle and bottom). The weight of the zero-energy
modes in the N = 2 phase (bottom) is twice the weight of the
Majorana modes in the topological SC phase with N = 1 (middle).
However, the clearest distinction can be made between the N = 0
and the N = 1 phases. The LDOS is integrated over the transverse
coordinates y and z.

disorder discussed in the previous section or combinations of
different types of disorder. (ii) Observing a zero-energy peak at
a certain value of the Zeeman field does not by itself prove the
realization of a topological SC phase. The trivial SC state with
N = 2 may also have a zero-energy peak separated from all
other excitations by a minigap. To clearly identify the N = 1
phase one must measure the LDOS as a function of the Zeeman
field starting from % = 0, that is, from the trivial SC phase with
N = 0. Continuously increasing % will generate a transition
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I. INTRODUCTION

The search for Majorana fermions has become an active
and exciting pursuit in condensed-matter physics.1–4 Majorana
fermions, particles which are their own antiparticles, were
originally envisioned by Majorana in 19375 in the context of
particle physics (i.e., the physics of neutrinos). However, the
current search for Majorana particles is mostly taking place in
condensed-matter systems,6,7 where Majorana quasiparticles
appear in electronic systems as a result of fractionalization
and as emergent modes occupying nonlocal zero energy
states. The nonlocality of these modes provides the ability
to exchange and manipulate fractionalized quasiparticles and
leads to non-Abelian braiding statistics.8–14 Hence, in addition
to being of paramount importance for fundamental physics,
this property of the Majoranas places them at the heart of
topological quantum computing schemes.13,15–29 We mention
that solid-state systems, where the Majorana mode emerges
as a zero-energy state of an effective (but realistic) low-
energy Hamiltonian, enable the realization of the Majorana
operator itself, not just of the Majorana particle. Consequently,
Majorana physics in solid-state systems is, in fact, much
more subtle than originally envisioned by Majorana in 1937.
For example, in condensed-matter systems the nonlocal non-
Abelian topological nature of the Majorana modes that are of
interest to us is a purely emergent property.

About 10 years ago, Read and Green9 discovered that
Majorana zero-energy modes can appear quite naturally in
two-dimensional (2D) chiral p-wave superconductors where
these quasiparticles, localized at the vortex cores, correspond
to an equal superposition of a particle and a hole. A year
later, Kitaev11 introduced a very simple toy model for a 1D
Majorana quantum wire with localized Majorana zero-energy
modes at the ends. Both these proposals involve spinless
p-wave superconductors where one can explicitly demonstrate
the existence of Majorana zero-energy modes by solving
the corresponding mean-field Hamiltonian. Recently, several

groups30,31 suggested a way to engineer spinless p-wave
superconductors in the laboratory using a combination of
strong spin-orbit coupling and superconducting proximity
effect, thus opening the possibility of realizing Majorana
fermions in solid-state systems to the experimental field. The
basic idea of the semiconductor/superconductor proposal31

is that the interplay of spin-orbit interaction, s-wave super-
conductivity and Zeeman spin splitting could, in principle,
lead to a topological superconducting phase with localized
zero-energy Majorana modes in the semiconductor. Since
then, there have been many proposals for realizing solid-state
Majoranas in various superconducting heterostructures.30–45

Among them, the most promising ones involve quasi-1D
semiconductor nanowires with strong spin-orbit interaction
proximity-coupled with an s-wave superconductor.37,38,40 The
main advantage of this proposal is its simplicity: It does
not require any specialized new materials but rather involves
a conventional semiconductor with strong Rashba coupling
such as InAs or InSb, a conventional superconductor such
as Al or Nb, and an in-plane magnetic field. High-quality
semiconductor nanowires can be epitaxially grown (see, for
example, Ref. 46 for InAs and Ref. 47 for InSb) and are known
to have a large spin-orbit interaction strength α as well as large
Lande g factor [gInAs ∼ 10–25 (Ref. 48) and gInSb ∼ 20–70
(Ref. 47)]. Furthermore, these materials are known to form
interfaces that are highly transparent for electrons, allowing
one to induce a large superconducting gap ".49–51 Thus,
semiconductor nanowires show great promise for realizing and
observing Majorana particles.6,7 It is important to emphasize
that in the superconductor-semiconductor heterostructures the
Majorana mode is constructed or engineered to exist as a
zero-energy state, and as such, it should be experimentally
observable in the laboratory under the right conditions.

In a strictly 1D nanowire in contact with a superconductor,
the condition for driving the system into a topological
superconducting phase37,38 is |Vx | >

√
"2 + µ2, where Vx is
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with an unambiguous identification of the Majorana bound
state in the SM nanowire are well within a realistic parameter
regime.

The tunneling current between a metallic tip and the
nanowire can be evaluated within the Keldysh nonequilibrium
formalism.76 In terms of real-space Green’s functions we have

I = e

h

∫
dωReTr

{[
1 − GR

0 (ω)"R(ω − eV )
]−1

×
[
(1 − 2fω−eV )GR

0 (ω)"R(ω − eV ) + 2(fω−eV − fω)

×GR
0 "A(ω − eV ) − (1 − 2fω)GA

0 (ω)"A(ω − eV )
]

×
[
1 − GA

0 (ω)"A(ω − eV )
]−1}

, (46)

where V is the bias voltage applied between the tip and the
nanowire and fω = 1/(eβω + 1) is the Fermi-Dirac distribu-
tion function corresponding to a temperature kbT = β−1. The
retarded (advanced) Green’s function for the nanowire has the
expression

G
R(A)
0 (r,r ′,ω) =

∑

n

{
u∗

n(r)un(r ′)
ω − En ± iη

+ v∗
n(r)vn(r ′)

ω + En ± iη

}
, (47)

where un and vn are the particle and hole components of the
wave function corresponding to the energy En. The wave
functions and the energies are obtained by diagonalizing
the effective BdG Hamiltonian for the nanowire, including
the contibution from disorder, as described in the previous
sections. The matrices "R(A) contain information about the tip
and the tip-nanowire coupling. Specifically, we have

"R(A)(r,r ′,ω) = γr,r ′

∫
dx

ν(x)
ω − x ± iη

, (48)

where ν(x) represents the density of states of the metallic tip
and γr,r depends on the tunneling matrix elements between the
tip and the wire. We note that in Eq. (46) the trace is taken over
the position vectors. We consider a tunneling model in which
the amplitude of the tunneling matrix elements vary exponen-
tially with the distance from the metallic tip. Specifically, we
have γr,rγ0θrθr ′ , where γ0 gives the overall strength of the
tip-nanowire coupling and the position-dependent factor is

θr = e− 1
ξ
[
√

(x−xtip)2+(y−ytip)2+(z−ztip)2−xtip], (49)

with (xtip,ytip,ztip) being the position vector for the tip and ξ
a characteristic length scale associated with the exponential
decay of the tip-wire coupling. In the numerical calculations
we take ξ = 0.4a and (xtip,ytip,ztip) = (−3a,Ly/2,Lz/2); that
is, the tip is is at a distance equal with three lattice spacings
away from the end of the wire. With these choices, the
differential conductance becomes

dI

dV
∝ −

∑

n

[f ′(En − eV )|⟨un|θ⟩|2

+ f ′(−En − eV )|⟨vn|θ⟩|2], (50)

where the matrix elements ⟨un|θ⟩ and ⟨vn|θ⟩ involve sum-
mations over the lattice sites of the nanowire system and
provide the amplitudes for tunneling into specific states. Finite
temperature effects are incorporated through the derivatives of
the Fermi-Dirac function, f ′.

FIG. 32. (Color online) Differential conductance for tunneling
into the end of a superconducting nanowire. The curves correspond to
different values of the Zeeman field ranging from " = 11Eα (bottom)
to " = 36Eα (top) in steps of Eα . The curves were shifted vertically
for clarity. The trivial SC phase (" < 21Eα) is characterized by a gap
that vanishes in the critical region (" ≈ 21Eα). The signature of the
topological phase is the zero-energy peak resulting from tunneling
into the Majorana mode. The differential conductance was calculated
at a temperature T ≈ 50 mK for a disordered wire with a linear
density of charged impurities nimp = 7/µm.

The dependence of the tunneling differential conductance
on the bias voltage for a superconducting nanowire with
disorder is shown in Fig. 32. Different curves correspond
to different values of the Zeeman field between " = 11Eα
(bottom) and " = 36Eα (top) and are shifted vertically for
clarity. The temperature used in the calculation is 50 mK,
a value that can be easily reached experimentally. Lower
temperature values will generate sharper features, but the
overall picture remains qualitatively the same. Note that the
closing of the gap in the critical region between the trivial SC
phase and the topological SC phase can be clearly observed.
In this region dI/dV has features over the entire low-energy
range, as discussed in the previous section. The Majorana
bound state at " > 22Eα is clearly marked by a sharp peak at
V = 0, separated by a gap from other finite energy features. We
conclude that measuring the tunneling differential conductance
can provide a clear and unambiguous probe for Majorana
bound states in SM nanowires.
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All elementary particles have an antiparticle of opposite charge (for 
example, an electron and a positron); the meeting of a particle with its 
antiparticle results in the annihilation of both. A special class of parti-
cles, called Majorana fermions, are predicted to exist that are identical to 
their own antiparticle (1). They may appear naturally as elementary par-
ticles, or emerge as charge-neutral and zero-energy quasi-particles in a 
superconductor (2, 3). Particularly interesting for the realization of 
qubits in quantum computing are pairs of localized Majoranas separated 
from each other by a superconducting region in a topological phase (4–
11). 

Based on earlier semiconductor-based proposals, (6) and later (7), 
Lutchyn et al. (8) and Oreg et al. (9) have outlined the necessary ingre-
dients for engineering a nanowire device that should accommodate pairs 
of Majoranas. The starting point is a one-dimensional nanowire made of 
semiconducting material with strong spin-orbit interaction (Fig. 1A). In 
the presence of a magnetic field, B, along the axis of the nanowire (i.e., a 
Zeeman field), a gap is opened at the crossing between the two spin-orbit 
bands. If the Fermi energy, ȝ, is inside this gap, the degeneracy is two-
fold whereas outside the gap it is four-fold. The next ingredient is to 
connect the semiconducting nanowire to an ordinary s-wave supercon-
ductor (Fig. 1A). The proximity of the superconductor induces pairing in 
the nanowire between electron states of opposite momentum and oppo-
site spins and induces a gap, ǻ. Combining this two-fold degeneracy 
with an induced gap creates a topological superconductor (4–11). The 
condition for a topological phase is EZ > (ǻ2 + ȝ2)1/2, with the Zeeman 
energy, EZ = gȝBB/2 (g is the Landé g-factor; ȝB the Bohr magneton). 
Near the ends of the wire, the electron density is reduced to zero and 
subsequently ȝ will drop below the subband energies such that ȝ2 be-
comes large. At the points in space where EZ = (ǻ2 + ȝ2)1/2 Majoranas 
arise as zero-energy (i.e., mid-gap) bound states—one at each end of the 
wire (4, 8–11). 

Despite their zero charge and energy, Majoranas can be detected in 
electrical measurements. Tunneling spectroscopy from a normal conduc-
tor into the end of the wire should reveal a state at zero energy (12–14). 

Here we report the observation of such 
zero-energy peaks and show that they 
rigidly stick to zero-energy while 
changing B and gate voltages over 
large ranges. Furthermore, we show 
that this zero-bias peak is absent if we 
take out any of the necessary ingredi-
ents of the Majorana proposals, i.e., 
the rigid zero bias peak disappears for 
zero magnetic field, for a magnetic 
field parallel to the spin-orbit field, or 
when we take out the superconductivi-
ty. 

We use InSb nanowires (15), 
which are known to have strong spin-
orbit interaction and a large g-factor 
(16). From our earlier quantum dot 
experiments we extract a spin-orbit 
length lso § 200 nm corresponding to a 
Rashba parameter Į § 0.2 eV•Å (17). 
This translates to a spin-orbit energy 
scale Į2m*/(2ƫ2) § 50 ȝeV (m* = 
0.015me is the effective electron mass 
in InSb, me is the bare electron mass). 
Importantly, the g-factor in bulk InSb 
is very large, g § 50, yielding EZ/B § 
1.5 meV/T. As shown below, we find 
an induced superconducting gap ǻ § 
250 ȝeV. For ȝ = 0 we thus expect to 

enter the topological phase for B ~ 0.15 T where EZ starts to exceed ǻ. 
The energy gap of the topological superconductor is estimated to be a 
few Kelvin (17), if we assume a ballistic nanowire. The topological gap 
is significantly reduced in a disordered wire (18, 19). We have measured 
mean free paths of ~300 nm in our wires (15), implying a quasi-ballistic 
regime in micrometer long wires. With these numbers we expect 
Majorana zero-energy states to become observable below one Kelvin 
and around 0.15 T. 

A typical sample is shown in Fig. 1B. We first fabricate a pattern of 
narrow (50 nm) and wider (300 nm) gates on a silicon substrate (20). 
The gates are covered by a thin Si3N4 dielectric before we randomly 
deposit a low density of InSb nanowires. Next, we electrically contact 
those nanowires that have landed properly relative to the gates. The low-
er contact in Fig. 1B fully covers the bottom part of the nanowire. We 
have designed the upper contact to only cover half of the top part of the 
nanowire, avoiding complete screening of the underlying gates. This 
allows us to change the Fermi energy in the section of the nanowire 
(NW) with induced superconductivity. We have used either a normal (N) 
or superconducting (S) material for the lower and upper contacts, result-
ing in three sample variations: N-NW-S, N-NW-N and S-NW-S. Here 
we discuss our main results on the N-NW-S devices whereas the other 
two types, serving as control devices, are described in (20). 

To perform spectroscopy on the induced superconductor we create a 
tunnel barrier in the nanowire by applying a negative voltage to a narrow 
gate (dark green gate in Fig. 1, B and C). A bias voltage applied exter-
nally between the N and S contacts drops almost completely across the 
tunnel barrier. In this setup the differential conductance dI/dV at voltage 
V is proportional to the density of states at energy E = eV, relative to the 
zero-energy, dashed line in Fig. 1C. Figure 1D shows an example taken 
at B = 0. The two peaks at ±250 ȝeV correspond to the peaks in the qua-
si-particle density of states of the induced superconductor, providing a 
value for the induced gap, ǻ § 250 ȝeV. We generally find a finite dI/dV 
in between these gap edges. We observe pairs of resonances with ener-
gies symmetric around zero bias superimposed on non-resonant currents 
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Majorana fermions are particles identical to their own antiparticles. They have been 
theoretically predicted to exist in topological superconductors. We report electrical 
measurements on InSb nanowires contacted with one normal (Au) and one 
superconducting electrode (NbTiN). Gate voltages vary electron density and define 
a tunnel barrier between normal and superconducting contacts. In the presence of 
magnetic fields of order 100 mT we observe bound, mid-gap states at zero bias 
voltage. These bound states remain fixed to zero bias even when magnetic fields 
and gate voltages are changed over considerable ranges. Our observations support 
the hypothesis of Majorana fermions in nanowires coupled to superconductors.  o
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covered with superconductor is much less effective due to efficient 
screening. The number of occupied subbands in this part is unknown, but 
it is most likely multi-subband. As shown in figs. S9 and S11 of (20) we 
do have to tune gate 1 and the tunnel barrier to the right regime in order 
to observe the ZBP. 

We have measured in total several hundred panels sweeping various 
gates on different devices. Our main observations (20) are (i) ZBP exists 
over a substantial voltage range for every gate starting from the barrier 
gate until gate 4, (ii) we can occasionally split the ZBP in two peaks 
located symmetrically around zero, and (iii) we can never move the peak 
away from zero to finite bias. Data sets such as those in Figs. 2 and 3 
demonstrate that the ZBP remains stuck to zero energy over considerable 
changes in B and gate voltage Vg. 

Figure 3D shows the temperature dependence of the ZBP. We find 

that the peak disappears at around ~300 mK, providing a thermal energy 
scale of kBT ~ 30 ȝeV. The full-width at half-maximum at the lowest 
temperature is ~20 ȝeV, which we believe is a consequence of thermal 
broadening as 3.5·kBT(60 mK) = 18 ȝeV. 

Next we verify explicitly that all the required ingredients in the theo-
retical Majorana proposals (Fig. 1A) are indeed essential for observing 
the ZBP. We have already verified that a nonzero B-field is needed. 
Now, we test if spin-orbit interaction is crucial for the absence or pres-
ence of the ZBP. Theory requires that the external B has a component 
perpendicular to Bso. We have measured a second device in a different 
setup containing a 3D vector magnet such that we can sweep the B field 
in arbitrary directions. In Fig. 4 we show dI/dV versus V while varying 
the angle for a constant field magnitude. In Fig. 4A the plane of rotation 
is approximately equal to the plane of the substrate. We clearly observe 
that the ZBP comes and goes with angle. The ZBP is completely absent 
around ʌ/2, which thereby we deduce as the direction of Bso. In Fig. 4B 
the plane of rotation is perpendicular to Bso. Indeed we observe that the 
ZBP is now present for all angles, because B is now always perpendicu-
lar to Bso. These observations are in full agreement with expectations for 
the spin-orbit direction in our samples (17, 31). We have further verified 
that this angle dependence is not a result of the specific magnitude of B 
or a variation in g-factor (20). 

As a last check we have fabricated and measured a device of identi-
cal design but with the superconductor replaced by a normal Au contact 
(i.e., a N-NW-N geometry). In this sample we have not found any signa-
ture of a peak that sticks to zero bias while changing both B and Vg (20). 

Fig. 3. Gate voltage dependence. (A) 2D color plot of dI/dV 
versus V and voltage on gate 2 at 175 mT and 60 mK. An-
dreev bound states cross through zero bias, for example 
near -5 V (dotted lines). The ZBP is visible from –10 to ~5 V 
(although in this color setting it is not equally visible every-
where). Split peaks are observed in the range of 7.5 to 10 V 
(20). In (B) and (C) we compare voltage sweeps on gate 4 
for 0 and 200 mT with the zero bias peak absent and pre-
sent, respectively. Temperature is 50 mK. [Note that in (C) 
the peak extends all the way to –10 V (19).] (D) Temperature 
dependence. dI/dV versus V at 150 mT. Traces have an off-
set for clarity (except for the lowest trace). Traces are taken 
at different temperatures (from bottom to top: 60, 100, 125, 
150, 175, 200, 225, 250, and 300 mK). dI/dV outside ZBP at 
V = 100 ȝeV is 0.12 ± 0.01·2e2/h for all temperatures. A full-
width at half-maximum of 20 ȝeV is measured between ar-
rows. All data in this figure are from device 1. 

Fig. 2. Magnetic field dependent spectroscopy. (A) dI/dV 
versus V at 70 mK taken at different B-fields (from 0 to 490 
mT in 10 mT steps; traces are offset for clarity, except for the 
lowest trace at B = 0). Data from device 1. (B) Color scale 
plot of dI/dV versus V and B. The zero-bias peak is highlight-
ed by a dashed oval. Dashed lines indicate the gap edges. At 
~0.6 T a non-Majorana state is crossing zero bias with a 
slope equal to ~3 meV/T (indicated by sloped dotted lines). 
Traces in (A) are extracted from (B). 
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covered with superconductor is much less effective due to efficient 
screening. The number of occupied subbands in this part is unknown, but 
it is most likely multi-subband. As shown in figs. S9 and S11 of (20) we 
do have to tune gate 1 and the tunnel barrier to the right regime in order 
to observe the ZBP. 

We have measured in total several hundred panels sweeping various 
gates on different devices. Our main observations (20) are (i) ZBP exists 
over a substantial voltage range for every gate starting from the barrier 
gate until gate 4, (ii) we can occasionally split the ZBP in two peaks 
located symmetrically around zero, and (iii) we can never move the peak 
away from zero to finite bias. Data sets such as those in Figs. 2 and 3 
demonstrate that the ZBP remains stuck to zero energy over considerable 
changes in B and gate voltage Vg. 

Figure 3D shows the temperature dependence of the ZBP. We find 

that the peak disappears at around ~300 mK, providing a thermal energy 
scale of kBT ~ 30 ȝeV. The full-width at half-maximum at the lowest 
temperature is ~20 ȝeV, which we believe is a consequence of thermal 
broadening as 3.5·kBT(60 mK) = 18 ȝeV. 

Next we verify explicitly that all the required ingredients in the theo-
retical Majorana proposals (Fig. 1A) are indeed essential for observing 
the ZBP. We have already verified that a nonzero B-field is needed. 
Now, we test if spin-orbit interaction is crucial for the absence or pres-
ence of the ZBP. Theory requires that the external B has a component 
perpendicular to Bso. We have measured a second device in a different 
setup containing a 3D vector magnet such that we can sweep the B field 
in arbitrary directions. In Fig. 4 we show dI/dV versus V while varying 
the angle for a constant field magnitude. In Fig. 4A the plane of rotation 
is approximately equal to the plane of the substrate. We clearly observe 
that the ZBP comes and goes with angle. The ZBP is completely absent 
around ʌ/2, which thereby we deduce as the direction of Bso. In Fig. 4B 
the plane of rotation is perpendicular to Bso. Indeed we observe that the 
ZBP is now present for all angles, because B is now always perpendicu-
lar to Bso. These observations are in full agreement with expectations for 
the spin-orbit direction in our samples (17, 31). We have further verified 
that this angle dependence is not a result of the specific magnitude of B 
or a variation in g-factor (20). 

As a last check we have fabricated and measured a device of identi-
cal design but with the superconductor replaced by a normal Au contact 
(i.e., a N-NW-N geometry). In this sample we have not found any signa-
ture of a peak that sticks to zero bias while changing both B and Vg (20). 

Fig. 3. Gate voltage dependence. (A) 2D color plot of dI/dV 
versus V and voltage on gate 2 at 175 mT and 60 mK. An-
dreev bound states cross through zero bias, for example 
near -5 V (dotted lines). The ZBP is visible from –10 to ~5 V 
(although in this color setting it is not equally visible every-
where). Split peaks are observed in the range of 7.5 to 10 V 
(20). In (B) and (C) we compare voltage sweeps on gate 4 
for 0 and 200 mT with the zero bias peak absent and pre-
sent, respectively. Temperature is 50 mK. [Note that in (C) 
the peak extends all the way to –10 V (19).] (D) Temperature 
dependence. dI/dV versus V at 150 mT. Traces have an off-
set for clarity (except for the lowest trace). Traces are taken 
at different temperatures (from bottom to top: 60, 100, 125, 
150, 175, 200, 225, 250, and 300 mK). dI/dV outside ZBP at 
V = 100 ȝeV is 0.12 ± 0.01·2e2/h for all temperatures. A full-
width at half-maximum of 20 ȝeV is measured between ar-
rows. All data in this figure are from device 1. 

Fig. 2. Magnetic field dependent spectroscopy. (A) dI/dV 
versus V at 70 mK taken at different B-fields (from 0 to 490 
mT in 10 mT steps; traces are offset for clarity, except for the 
lowest trace at B = 0). Data from device 1. (B) Color scale 
plot of dI/dV versus V and B. The zero-bias peak is highlight-
ed by a dashed oval. Dashed lines indicate the gap edges. At 
~0.6 T a non-Majorana state is crossing zero bias with a 
slope equal to ~3 meV/T (indicated by sloped dotted lines). 
Traces in (A) are extracted from (B). 
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throughout the gap region. Symmetric resonances likely originate from 
Andreev bound states (21, 22), whereas non-resonant current indicates 
that the proximity gap has not fully developed (23). 

Figure 2 summarizes our main result. Figure 2A shows a set of 
dI/dV versus V traces taken at increasing B-fields in 10 mT steps from 
zero (lowest trace) to 490 mT (top trace), offset for clarity. We again 
observe the gap edges at ±250 ȝeV. When we apply a B-field between 
~100 and ~400 mT along the nanowire axis we observe a peak at V = 0. 
The peak has an amplitude up to ~0.05·2e2/h and is clearly discernible 
from the background conductance. Above ~400 mT we observe a pair 
of peaks. The color panel in Fig. 2B provides an overview of states and 
gaps in the plane of energy and B-field from –0.5 to 1 T. The observed 
symmetry around B = 0 is typical for all our data sets, demonstrating 
reproducibility and the absence of hysteresis. We indicate the gap edges 
with horizontal dashed lines (highlighted only for B < 0). A pair of res-
onances crosses zero energy at ~0.65 T with a slope of order EZ (high-
lighted by dotted lines). We have followed these resonances up to high 
bias voltages in (20) and identified them as Andreev states bound within 
the gap of the bulk, NbTiN superconducting electrodes (~2 meV). By 
contrast, the zero-bias peak sticks to zero energy over a range of ǻB ~ 
300 mT centered around ~250 mT. Again at ~400 mT we observe two 
peaks located at symmetric, finite biases. 

In order to identify the origin of these zero-bias peaks (ZBP) we 
need to consider various options, including the Kondo effect, Andreev 
bound states, weak antilocalization and reflectionless tunneling, versus a 
conjecture of Majorana bound states. ZBPs due to the Kondo effect (24) 
or Andreev states bound to s-wave superconductors (25) can occur at 
finite B. However, when changing B these peaks then split and move to 
finite energy. A Kondo resonance moves with twice Ez (24), which is 
easy to dismiss as the origin for our zero-bias peak because of the large 
g-factor in InSb. (Note that even a Kondo effect from an impurity with g 
= 2 would be discernible.) Reflectionless tunneling is an enhancement of 
Andreev reflection by time-reversed paths in a diffusive normal region 
(26). As in the case of weak antilocalization, the resulting ZBP is maxi-
mal at B = 0 and disappears when B is increased, see also (20). We thus 
conclude that the above options for a ZBP do not provide natural expla-
nations for our observations. We are not aware of any mechanism that 

could explain our observations, besides the conjecture of a Majorana. 
To further investigate the zero-biasness of our peak, we measure 

gate voltage dependences. Figure 3A shows a color panel with voltage 
sweeps on gate 2. The main observation is the occurrence of two oppo-
site types of behavior. First, we observe peaks in the density of states 
that change with energy when changing gate voltage (e.g., highlighted 
with dotted lines), these are the same resonances as shown in Fig. 2B 
and analyzed in (20). The second observation is that the ZBP from Fig. 
2, which we take at 175 mT, remains stuck to zero bias while changing 
the gate voltage over a range of several volts. Clearly, our gates work 
since they change the Andreev bound states by ~0.2 meV per Volt on the 
gate. Panels (B) and (C) underscore this observation with voltage sweeps 
on a different gate, number 4. (B) shows that at zero magnetic field no 
ZBP is observed. At 200 mT the ZBP becomes again visible in (C). 
Comparing the effect of gates 2 and 4, we observe that neither moves the 
ZBP away from zero. 

Initially, Majorana fermions were predicted in single-subband, one-
dimensional wires (8, 9), but further work extended these predictions to 
multi-subband wires (27–30). In the nanowire section that is uncovered 
we can gate tune the number of occupied subbands from 0 to ~4 with 
subband separations of several meV. Gate tuning in the nanowire section 

Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual 
device layout with a semiconducting nanowire in proximity to an 
s-wave superconductor. An external B-field is aligned parallel to 
the wire. The Rashba spin-orbit interaction is indicated as an 
effective magnetic field, Bso, pointing perpendicular to the nan-
owire. The red stars indicate the expected locations of a 
Majorana pair. (Bottom) Energy, E, versus momentum, k, for a 
1D wire with Rashba spin-orbit interaction, which shifts the 
spin-down band (blue) to the left and spin-up band (red) to the 
right. Blue and red parabola are for B = 0. Black curves are for 
B � 0, illustrating the formation of a gap near k = 0 of size gȝBB. 
(ȝ is the Fermi energy with ȝ = 0 defined at crossing of parabo-
las at k = 0). The superconductor induces pairing between 
states of opposite momentum and opposite spin creating a gap 
of size ǻ. (B) Implemented version of theoretical proposals. 
Scanning electron microscope image of the device with normal 
(N) and superconducting (S) contacts. The S-contact only co-
vers the right part of the nanowire. The underlying gates, num-
bered 1 to 4, are covered with a dielectric. [Note that gate 1 
connects two gates and gate 4 connects four narrow gates; see 
(C).] (C) (Top) Schematic of our device. (Down) illustration of 
energy states. Green indicates the tunnel barrier separating the 
normal part of the nanowire on the left from the wire section 
with induced superconducting gap, ǻ. [In (B) the barrier gate is 
also marked green.] An external voltage, V, applied between N 
and S drops across the tunnel barrier. Red stars again indicate 
the idealized locations of the Majorana pair. Only the left 
Majorana is probed in this experiment. (D) Example of differen-
tial conductance, dI/dV, versus V at B = 0 and 65 mK, serving 
as a spectroscopic measurement on the density of states in the 
nanowire region below the superconductor. Data from device 1. 
The two large peaks, separated by 2ǻ, correspond to the quasi-
particle singularities above the induced gap. Two smaller 
subgap peaks, indicated by arrows, likely correspond to An-
dreev bound states located symmetrically around zero energy. 
Measurements are performed in dilution refrigerators using 
standard low-frequency lock-in technique (frequency 77 Hz, 
excitation 3 ȝV) in the four-terminal (devices 1 and 3) or two-
terminal (device 2) current-voltage geometry. 

 o
n 

Ap
ril

 1
3,

 2
01

2
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

Zero-bias Peak as Majorana Signature





AluminumInAs



RAINIS, TRIFUNOVIC, KLINOVAJA, AND LOSS PHYSICAL REVIEW B 87, 024515 (2013)

II. MODEL

We consider a two-dimensional rectangular nanowire of
length L along the x̂ direction and lateral extension W in the
ŷ direction. All the plots presented in this manuscript refer
to 4-subband wires (W = 4), but we have conducted similar
simulations for W = 1,2,8 as well, noting only quantitative
changes in the relative strength of the different dI/dV features
(besides the known peculiarity of the one-band case, where
some features are absent).

The tight-binding Hamiltonian (lattice constant a) describ-
ing the different sections of the setup has the form

H =
∑

m,d

c
†
m+d,α

[
−tδαβ − iᾱm(x̂ · d)σ y

αβ

]
cm,β

+
∑

m

c†m,α

[
(ϵm − µ0)δαβ − gm

2
µBBxσ

x
αβ

]
cm,β

+
∑

m

&m(c†m,↑c
†
m,↓ + H.c.), (1)

where t = h̄2/(2ma2) is the hopping amplitude (set to 1
and taken as an energy unit) and ᾱ is the spin-flip hopping
amplitude, related to the physical SOI parameter by ᾱ = α/2a
and to the SOI energy by Eso = ᾱ2/t . Here and in the
remainder of the paper we are neglecting transverse spin-orbit
coupling, but we have checked that the introduction of a small
finite transverse SOI is not affecting qualitatively our results.
We made the assignment t = 10 meV, which corresponds to
taking a ≃ 15 nm, and realistic sizes (∼µm) are then amenable
to reasonable computations. The sums run over all lattice
sites m and nearest neighbors (m + d). Implicit summation
over repeated spin indices is assumed. The constant µ0 is
chosen to set the common chemical potential to the zero-field
bottom of the topmost band and depends on the number
of subbands (i.e., on W ). Further, ϵm = −µm + Um + wm
accounts for local variations of the chemical potential, for
the tunnel-barrier potential Um, and includes an onsite random
potential wm which models Anderson disorder. The tunnel
barrier has a Gaussian profile with height U0 and width λ.
The external magnetic field B points along the nanowire axis
(x̂) and induces a Zeeman splitting 2VZ = gmµBB. Finally,
& is the pairing amplitude and can either account for the
native superconductivity in the bulk s-wave superconducting
lead (&0) or for the proximity-induced pairing in the nanowire
(&⋆), as exemplified in Fig. 1. All the above quantities are
taken to be site-dependent along the x̂ direction (except wm,
which is taken to be completely random), so that we can model
different parts of the setup. The normal lead is characterized by

ᾱ = 0, µ ≃ −µ0 (i.e., metallic regime),

g = 2, wm = 0, &m = 0. (2)

The nanowire is characterized by finite ᾱ = ᾱR, chemical
potential µ ≃ 0 close to the bottom of the topmost band,
g = 50 appropriate for InSb nanowires, and &m varying
from 0 in the normal section to &⋆ in the proximized
section. The nanowire is adiabatically connected to a metallic
superconducting lead with

ᾱ = 0, µ ≃ −µ0,

g = 2, wm = 0, &m = &0 ! &⋆. (3)

FIG. 1. (Color online) The schematics of the NSS′ geometry setup
we consider in this work (top panel). The nanowire (gray) is connected
on the left to a semi-infinite normal lead (N, blue) and on the right
to a semi-infinite bulk s-wave superconducting lead (S, green). It
consists of a normal section (NW, gray), where a potential barrier
U (x) (black) is created, and a proximity-induced superconducting
nanowire section (SW, gray). We allow for static disorder w(x,y) (red
crosses) in the nanowire. The spatial dependence of the parameters
entering the Hamiltonian in Eq. (1) is qualitatively depicted in the
bottom panel.

In a simpler model the nanowire is semi-infinite, without
external superconductor, referred to as NS geometry. This
corresponds to taking the superconducting lead to be identical
to the nanowire, with a single pairing amplitude &⋆. In such
a configuration, the second MF is always moved to infinity,
and the ZBP is locked to zero for all B > Bc, whereby
the topological transition occurs at the “bulk” critical field
(gµB/2)Bc =

√
&2

⋆ + µ2.5–10 We will sometimes switch to
this NS configuration in order to connect with previous
studies16,17,23–28 and to understand the effect of the bulk
superconductor.

In the actual experiments, and in a fully microscopic theo-
retical simulation, the nanowire has zero pairing everywhere,
and the effective gap &⋆ is generated by the coupling to
the bulk superconductor. Usually one can forget about the
superconductor and work with a wire with given &⋆. However,
in the considered setup the bulk S is still playing a role, since
current is extracted through it, and it is therefore substantially
modifying the dI/dV behavior (not simply by singling out
the Andreev reflection contribution of an NS calculation). It
would be different in the case of transport across a proximity
wire placed on a superconductor that is not used as a contact
(NSN geometry).

Our setup aims exactly at taking this fact into account:
The proximity effect is included in an effective fashion
(not microscopically), but we do have two different pairing
regions that electrons have to cross. Still, with the sequential
geometry of Fig. 1 we are slightly simplifying here the
experimental setup,1–3 where the nanowire is side-contacted,
or top-contacted, and the current does not follow a straight
path.

First we note that the value of the SOI α in the experiments
is not known, as also noticed in Ref. 29, since the only available
measurements have been performed in a different setup, where
the SOI was likely modified. Similarly, the proximity pairing
amplitude is not directly accessible, and one can only deduce
it from the dI/dV behavior. Thus, it becomes interesting
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and even necessary to consider regimes with different SOI
strengths, or different proximity pairing amplitudes.

III. DISCUSSION

The first important point we want to make is that by
assuming that the actual SOI is larger than the reported one
(e.g., α = 0.2 eV Å, or Eso = 50 µeV in Ref. 1), one can get
a substantial improvement in the calculated dI/dV behavior,
with features more similar to experiments.1–3 In other words,
the measured data suggest a stronger SOI. In particular, we
observe the following facts.

(1) Under the assumption that the measured ZBP1–3 arises
from MFs, we conclude that µ ≃ 0 in the topological section,
since the ZBP emerges already at small B, 1

2gµBB ≃ "⋆ for
g = 50.

However, such a small µ, together with the reported SOI
values,1 would generate a rapid closing of the kF-gap "kF as
a function of B. This is indeed what we find in our transport
calculations for µ ≃ 0, α = 0.2 eV Å, both in the NS and NSS′

setup, see Figs. 2(a) and 2(c), respectively. Note that in the NS
case the ZBP stays at zero for all fields, whereas in the NSS′

case the ZBP exhibits an oscillating splitting (see below). In the
same figure we show that a stronger SOI gives a better agree-
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FIG. 2. (Color online) Effect of larger SOI strength, clean case.
We plot here the differential conductance dI/dV evaluated as a
function of bias voltage V and Zeeman energy VZ. Panels (a) and
(b) refer to the NS configuration, while (c) and (d) refer to the NSS′

setup. The parameters used here correspond to: "⋆ = 250 µeV,
"0 = 2.1 meV (only NSS′), µ0 = −3.8 meV, U0 = 45 meV, λ =
1 nm (narrow barrier), LN = 0, L⋆ = 3 µm (only NSS′) and µ = 0,
which corresponds to a bulk critical V c

Z = "⋆. For the case of
InSb, the plotted range VZ = 0 − 6"⋆ corresponds to B = 0 − 1 T.
Temperature is set to T = 75 mK. α = 0.2 eV Å(left column).
α = 0.8 eV Å(right column). Larger SOI yields a slower closing
of the kF-gap "kF (B), in both configurations, where kF is the Fermi
momentum. Notice that in the NSS′ case the kF-gap signal decreases
in intensity as the magnetic field is increased.

ment with the measured "kF (B), both in the NS setup,24 see
panel (b), and in the NSS′ setup, shown in panel (d). Note that
this latter SOI effect, which answers the issue raised in point
(iv) above, is independent of the nature of the observed ZBP.

As already observed elsewhere,16 the considered regime of
µ ≃ 0 is characterized by an invisible gap closing, probably
due to pretransition wave functions which are delocalized
throughout the wire, with little weight close to the probed
edges. At finite temperature we observe this behavior both in
the NS and in the NSS′ setups. On can thus state that issue (i)
has been settled.

(2) When realistic Anderson disorder is included in the
model, the closing of the gap becomes visible again even
in the µ ≃ 0 regime,17,26,29 reintroducing a discrepancy with
experiments.1–3 Disorder in a nanowire with weak SOI causes
a number of subgap states to appear, some of which cluster
around zero energy and possibly give rise to a nontopological
ZBP, more markedly for finiteµ.29 Such states are coming from
other subbands, for which the effective minigap gets reduced
in the presence of disorder. This is substantiated by the fact
that the ZBP in Fig. 3(a) has a conductance peak larger than
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FIG. 3. (Color online) Effect of larger SOI strength on disorder,
NSS′ case. The parameter values are the same as in Fig. 2. In addition,
a realistic disorder wm ∈ [−3,3] meV [corresponding to a mean free
path ℓmfp ≃ 150 nm (Ref. 29)] is included over the entire nanowire
length L ≃ 2.5 µm. We do not average over disorder configurations.
(a) α = 0.2 eV Å. (b) α = 0.8 eV Å. In the weak SOI regime,
the disorder lowers or destroys the gap relative to lower subbands,
bringing many supra-gap states down, close to the Fermi level, where
they cluster in some cases into a finite-extension ZBP, like in panel
(a). Such clustering is, however, removed for stronger SOI (Ref. 29),
see panel (b).
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and even necessary to consider regimes with different SOI
strengths, or different proximity pairing amplitudes.

III. DISCUSSION

The first important point we want to make is that by
assuming that the actual SOI is larger than the reported one
(e.g., α = 0.2 eV Å, or Eso = 50 µeV in Ref. 1), one can get
a substantial improvement in the calculated dI/dV behavior,
with features more similar to experiments.1–3 In other words,
the measured data suggest a stronger SOI. In particular, we
observe the following facts.

(1) Under the assumption that the measured ZBP1–3 arises
from MFs, we conclude that µ ≃ 0 in the topological section,
since the ZBP emerges already at small B, 1

2gµBB ≃ "⋆ for
g = 50.

However, such a small µ, together with the reported SOI
values,1 would generate a rapid closing of the kF-gap "kF as
a function of B. This is indeed what we find in our transport
calculations for µ ≃ 0, α = 0.2 eV Å, both in the NS and NSS′

setup, see Figs. 2(a) and 2(c), respectively. Note that in the NS
case the ZBP stays at zero for all fields, whereas in the NSS′

case the ZBP exhibits an oscillating splitting (see below). In the
same figure we show that a stronger SOI gives a better agree-
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We plot here the differential conductance dI/dV evaluated as a
function of bias voltage V and Zeeman energy VZ. Panels (a) and
(b) refer to the NS configuration, while (c) and (d) refer to the NSS′

setup. The parameters used here correspond to: "⋆ = 250 µeV,
"0 = 2.1 meV (only NSS′), µ0 = −3.8 meV, U0 = 45 meV, λ =
1 nm (narrow barrier), LN = 0, L⋆ = 3 µm (only NSS′) and µ = 0,
which corresponds to a bulk critical V c

Z = "⋆. For the case of
InSb, the plotted range VZ = 0 − 6"⋆ corresponds to B = 0 − 1 T.
Temperature is set to T = 75 mK. α = 0.2 eV Å(left column).
α = 0.8 eV Å(right column). Larger SOI yields a slower closing
of the kF-gap "kF (B), in both configurations, where kF is the Fermi
momentum. Notice that in the NSS′ case the kF-gap signal decreases
in intensity as the magnetic field is increased.

ment with the measured "kF (B), both in the NS setup,24 see
panel (b), and in the NSS′ setup, shown in panel (d). Note that
this latter SOI effect, which answers the issue raised in point
(iv) above, is independent of the nature of the observed ZBP.

As already observed elsewhere,16 the considered regime of
µ ≃ 0 is characterized by an invisible gap closing, probably
due to pretransition wave functions which are delocalized
throughout the wire, with little weight close to the probed
edges. At finite temperature we observe this behavior both in
the NS and in the NSS′ setups. On can thus state that issue (i)
has been settled.

(2) When realistic Anderson disorder is included in the
model, the closing of the gap becomes visible again even
in the µ ≃ 0 regime,17,26,29 reintroducing a discrepancy with
experiments.1–3 Disorder in a nanowire with weak SOI causes
a number of subgap states to appear, some of which cluster
around zero energy and possibly give rise to a nontopological
ZBP, more markedly for finiteµ.29 Such states are coming from
other subbands, for which the effective minigap gets reduced
in the presence of disorder. This is substantiated by the fact
that the ZBP in Fig. 3(a) has a conductance peak larger than
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FIG. 3. (Color online) Effect of larger SOI strength on disorder,
NSS′ case. The parameter values are the same as in Fig. 2. In addition,
a realistic disorder wm ∈ [−3,3] meV [corresponding to a mean free
path ℓmfp ≃ 150 nm (Ref. 29)] is included over the entire nanowire
length L ≃ 2.5 µm. We do not average over disorder configurations.
(a) α = 0.2 eV Å. (b) α = 0.8 eV Å. In the weak SOI regime,
the disorder lowers or destroys the gap relative to lower subbands,
bringing many supra-gap states down, close to the Fermi level, where
they cluster in some cases into a finite-extension ZBP, like in panel
(a). Such clustering is, however, removed for stronger SOI (Ref. 29),
see panel (b).
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The first important point we want to make is that by
assuming that the actual SOI is larger than the reported one
(e.g., α = 0.2 eV Å, or Eso = 50 µeV in Ref. 1), one can get
a substantial improvement in the calculated dI/dV behavior,
with features more similar to experiments.1–3 In other words,
the measured data suggest a stronger SOI. In particular, we
observe the following facts.

(1) Under the assumption that the measured ZBP1–3 arises
from MFs, we conclude that µ ≃ 0 in the topological section,
since the ZBP emerges already at small B, 1

2gµBB ≃ "⋆ for
g = 50.

However, such a small µ, together with the reported SOI
values,1 would generate a rapid closing of the kF-gap "kF as
a function of B. This is indeed what we find in our transport
calculations for µ ≃ 0, α = 0.2 eV Å, both in the NS and NSS′

setup, see Figs. 2(a) and 2(c), respectively. Note that in the NS
case the ZBP stays at zero for all fields, whereas in the NSS′

case the ZBP exhibits an oscillating splitting (see below). In the
same figure we show that a stronger SOI gives a better agree-
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We plot here the differential conductance dI/dV evaluated as a
function of bias voltage V and Zeeman energy VZ. Panels (a) and
(b) refer to the NS configuration, while (c) and (d) refer to the NSS′

setup. The parameters used here correspond to: "⋆ = 250 µeV,
"0 = 2.1 meV (only NSS′), µ0 = −3.8 meV, U0 = 45 meV, λ =
1 nm (narrow barrier), LN = 0, L⋆ = 3 µm (only NSS′) and µ = 0,
which corresponds to a bulk critical V c

Z = "⋆. For the case of
InSb, the plotted range VZ = 0 − 6"⋆ corresponds to B = 0 − 1 T.
Temperature is set to T = 75 mK. α = 0.2 eV Å(left column).
α = 0.8 eV Å(right column). Larger SOI yields a slower closing
of the kF-gap "kF (B), in both configurations, where kF is the Fermi
momentum. Notice that in the NSS′ case the kF-gap signal decreases
in intensity as the magnetic field is increased.
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this latter SOI effect, which answers the issue raised in point
(iv) above, is independent of the nature of the observed ZBP.

As already observed elsewhere,16 the considered regime of
µ ≃ 0 is characterized by an invisible gap closing, probably
due to pretransition wave functions which are delocalized
throughout the wire, with little weight close to the probed
edges. At finite temperature we observe this behavior both in
the NS and in the NSS′ setups. On can thus state that issue (i)
has been settled.

(2) When realistic Anderson disorder is included in the
model, the closing of the gap becomes visible again even
in the µ ≃ 0 regime,17,26,29 reintroducing a discrepancy with
experiments.1–3 Disorder in a nanowire with weak SOI causes
a number of subgap states to appear, some of which cluster
around zero energy and possibly give rise to a nontopological
ZBP, more markedly for finiteµ.29 Such states are coming from
other subbands, for which the effective minigap gets reduced
in the presence of disorder. This is substantiated by the fact
that the ZBP in Fig. 3(a) has a conductance peak larger than
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FIG. 3. (Color online) Effect of larger SOI strength on disorder,
NSS′ case. The parameter values are the same as in Fig. 2. In addition,
a realistic disorder wm ∈ [−3,3] meV [corresponding to a mean free
path ℓmfp ≃ 150 nm (Ref. 29)] is included over the entire nanowire
length L ≃ 2.5 µm. We do not average over disorder configurations.
(a) α = 0.2 eV Å. (b) α = 0.8 eV Å. In the weak SOI regime,
the disorder lowers or destroys the gap relative to lower subbands,
bringing many supra-gap states down, close to the Fermi level, where
they cluster in some cases into a finite-extension ZBP, like in panel
(a). Such clustering is, however, removed for stronger SOI (Ref. 29),
see panel (b).
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However, such a small µ, together with the reported SOI
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a function of B. This is indeed what we find in our transport
calculations for µ ≃ 0, α = 0.2 eV Å, both in the NS and NSS′
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of the kF-gap "kF (B), in both configurations, where kF is the Fermi
momentum. Notice that in the NSS′ case the kF-gap signal decreases
in intensity as the magnetic field is increased.
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due to pretransition wave functions which are delocalized
throughout the wire, with little weight close to the probed
edges. At finite temperature we observe this behavior both in
the NS and in the NSS′ setups. On can thus state that issue (i)
has been settled.

(2) When realistic Anderson disorder is included in the
model, the closing of the gap becomes visible again even
in the µ ≃ 0 regime,17,26,29 reintroducing a discrepancy with
experiments.1–3 Disorder in a nanowire with weak SOI causes
a number of subgap states to appear, some of which cluster
around zero energy and possibly give rise to a nontopological
ZBP, more markedly for finiteµ.29 Such states are coming from
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FIG. 3. (Color online) Effect of larger SOI strength on disorder,
NSS′ case. The parameter values are the same as in Fig. 2. In addition,
a realistic disorder wm ∈ [−3,3] meV [corresponding to a mean free
path ℓmfp ≃ 150 nm (Ref. 29)] is included over the entire nanowire
length L ≃ 2.5 µm. We do not average over disorder configurations.
(a) α = 0.2 eV Å. (b) α = 0.8 eV Å. In the weak SOI regime,
the disorder lowers or destroys the gap relative to lower subbands,
bringing many supra-gap states down, close to the Fermi level, where
they cluster in some cases into a finite-extension ZBP, like in panel
(a). Such clustering is, however, removed for stronger SOI (Ref. 29),
see panel (b).

024515-3

D. Rainis, L. Trifunovic, J. Klinovaja, D. Loss, Phys Rev. B. 87, 024515 (2013).

Experiment

Theory M. T. Deng, et al. 
QDev 

From	Andreev	to	Majorana	States

B// = 0 mT
B// = 500 mT
B// = 800 mT
B// = 1300 mT

Vsd (mV)
-0.3 0.3-0.2 -0.1 0.10.0 0.2

dI
/d

V 
(e

2 /h
)

0.00

0.10

0.20

0.25

0.15

0.05



Fusion Rule Device

See Poster by David Sabonis et al.















The	most	important	part:	
the	young	people	who	will	invent	the	future


