Black Holes, Information, and String Theory

29 October 2018

David A. McGady

Carlsberg Distinguished Postdoctoral Researcher at the NBIA

Structure of talk: 20th and 21st century physics

- 1. Gravity and Black Holes(BHs)
 - Newton
 - Einstein & Democracy
 - Schwarzschild & Black Holes
 - Hawking
- 2. Quantum mechanics & Info
 - Bohr & Heisenberg
 - Dirac & Feynman
 - Vacuum fluctuations
 - Hawking & Radiation

- 3. Thermodynamics & Hawking
 - Boltzmann & Entropy
 - Entropy & Temperature
 - Thermo & Quantum for BHs
 - (Quantum = Thermodynamics)
- 4. String Theory & Firewalls?
 - Maldacena & Holography
 - Quantum Gravity & Strings
 - Success: Strings & Black Holes
 - Firewalls & (exciting) future!

Structure of talk: 20th and 21st century physics

Sociological disclaimer(s):

There are Heroes here, but... physics is not just by heroes.

Further, the "heroes" who I do list are but a subset of those who've done important work.

Normal people can do physics (for my sake, thank goodness)

EG: Hawking's co-authors!

Part I: Black Holes, Relativity & Quantum Mechanics

- Lay groundwork for the talk
- Introduce Black Holes
- Introduce Einstein's Relativity
- Introduce Quantum Mechanics

Newton's Gravity

Any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them

Newton's Gravity

Any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them

$$F(r) = G_N \frac{m M}{r^2}$$

Newton's Gravity

- Orbits: closed and elliptic
- Stable solar systems
- Action at distance \neq Relativity
- Position and speed welldefined ≠ Quantum Mech

Galileo's Insight (led to Newtonian Physics)

- Bigger masses, bigger forces
- In exact proportion
- Different masses, same acceleration!
- Speed changes universally

"Black Holes" in Newtonian Gravity

- Recall: light-speed is finite
- Recall: "escape velocity"
- Escape velocity > light-speed, then effectively a Black Hole
- Simply a picture; will change

"Black Holes" in Newtonian Gravity

Escape velocity for Earth:

Radius ~ 6400 km; v ~ 11 km/s

- Recall: light-speed is finite
- Recall: "escape velocity"
- Escape velocity > light-speed, then effectively a Black Hole
- Simply a picture; will change

"Black Holes" in Newtonian Gravity

Note: escape velocity bigger

for more compact "Earths"!

- Recall: light-speed is finite
- Recall: "escape velocity"
- Escape velocity > light-speed, then effectively a Black Hole
- Simply a picture; will change

- Newton: Light-speed, "c", is not special
- Einstein: Light-speed, "c",IS special
- Rocket-flashlights
 - → = normal-flashlights
 - → Can't speed or slow light!

- Newton: Light-speed, "c", is not special
- Einstein: Light-speed, "c", IS special
- Rocket-flashlights
 - → = normal-flashlights
 - → Can't speed or slow light!

 Newton: Light-speed, "c", is not special

$$v_1 \oplus v_2|_{\text{Newton}} := v_1 + v_2$$

Einstein: Light-speed, "c",IS special

$$v_1 \oplus v_2|_{\text{Einstein}} := \frac{v_1 + v_2}{1 + (v_1 v_2 / c^2)}$$

- Rocket-flashlights
 - \rightarrow = normal-flashlights
 - → Can't speed or slow light!

$$v \oplus c|_{\text{Einstein}} = c$$

• Space and time interwoven

 Relative motion: durations, lengths appear different

- Gravity accelerates things
- Velocities change with time
- Space and time are warped, stretched by gravity
- Einstein's equations say how

- Gravity accelerates things
- Velocities change with time
- Space and time are warped, stretched by gravity
- Einstein's equations say how

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G_N T_{\mu\nu}$$

SCHWARZSCHILD'S SOLUTION

 Far away, it gives the result in Newton's gravity. Good!

- Close in, it has new features!
 - → First, simplest solution to GR
 - → New stuff! Still mysterious!!

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G_N T_{\mu\nu}$$

• Einstein's Equations = "GR"

→ Winter 1915-1916

SCHWARZSCHILD'S SOLUTION

- Schwarzschild: first solution!
 - → WWI German Artilleryman
 - → Found time to study GR
 - → Famous solution ALSO 1916!

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G_N T_{\mu\nu}$$

SCHWARZSCHILD'S SOLUTION

- Light moving away from star:
 - →Does not "slow down"
 - →But does lose *energy*
- Compact → "Black Holes"
 - \rightarrow Photon energy > 0
 - → Bounds radius
 - → Below it, light trapped!

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G_N T_{\mu\nu}$$

- Light moving away from star:
 - →Does not "slow down"
 - →But does lose *energy*

$$r_{\rm Sch} = 2G_N M/c^2$$

- Compact → "Black Holes"
 - →Photon energy > 0
 - → Bounds radius
 - → Below it, light trapped!

Black Holes in Einstein Gravity: "No Hair"!

- Compact star = **Black**
- Very few features = "No Hair"
 - → Mass (of course)
 - →Spin = conserved
 - → Charge = conserved
- That's it! BH = "Featureless"!

• Thermal radiation from Black Holes!

• Simple picture:

 Fluctuations are inherently quantum (next part of talk)!

• **Thermal** radiation from Black Holes!

• Simple picture:

 Fluctuations are inherently quantum (next part of talk)!

- Black Holes Evaporate!
- Conserved quantities
 - \rightarrow Mass
 - → Charge
 - → Angular momentum
- Radiation removes mass (and charge etc.): evaporation.

- Black Holes Evaporate!
- Conserved quantities
 - → Mass
 - → Charge
 - → Angular momentum
- Radiation removes mass (and charge etc.): evaporation.

- Black Holes Evaporate!
- Conserved quantities
 - → Mass
 - → Charge
 - → Angular momentum
- Radiation removes mass (and charge etc.): evaporation.

Electrons, Protons & Atoms: Maxwell

- Circular motion
 - → Continuous
 - → Swinging bricks = heavy
 - → Heavy = force = accelaration
- Accelerating charges radiate
 - →Old style TVs (sort of)
 - →X-rays
- Classical picture of atoms = constant radiation, unstable

Electrons, Protons & Atoms: Maxwell

- Circular motion
 - → Continuous
 - → Swinging bricks = heavy
 - → Heavy = force = accelaration
- Accelerating charges radiate
 - →Old style TVs (sort of)
 - →X-rays
- Classical picture of atoms = constant radiation, unstable

Electrons, Protons & Atoms: Bohr

- Maxwell Atom: continuous
- Bohr Atom: quantized
- Orbits quantized, thus stable!
- Rough question: Why? Fixed in Quantum Mechanics.

Space and Time in Quantum Mechanics

Quantum Mechanics = "QM"

• Positions are probabilistic

• Probabilities evolve in time

Space & Time: Quantum Mech vs Relativity

- "Where will it be?"
 - → Probabilistic
 - → Given by Schrodinger Eq.
- "How old is it?"
 - → An input into Schrodinger Eq
 - →Time marches on...
 - →...but positions don't
- QM: space-time asymmetry!
- GR: space-time symmetry!

GR:
$$x \longleftrightarrow$$

Space & Time: Quantum Mech vs Relativity

- "Where will it be?"
 - → Probabilistic
 - → Given by Schrodinger Eq.
- "How old is it?"
 - → An input into Schrodinger Eq
 - → Time marches on...
 - →...but positions don't
- QM: space-time asymmetry!
- GR: space-time symmetry!

QM:
$$\hat{\mathbf{x}} \longleftrightarrow \mathbf{t}$$

$$i\hbar \frac{\partial}{\partial t} \psi(\hat{\mathbf{x}}, t) = \left(-\frac{1}{2m} \partial_{\hat{\mathbf{x}}}^2 + V(\hat{\mathbf{x}})\right) \psi(\hat{\mathbf{x}}, t)$$

GR:
$$x \longleftrightarrow t$$

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G_N T_{\mu\nu}$$

Electrons, Protons & Atoms: Heisenberg

- Uncertainty Principle
- Apply to electrons and atoms
- Position vs. Momentum
- Time vs. Energy

Electrons, Protons & Atoms: Heisenberg

Real AFM image of single-layer graphite:

Note: Electrons and atoms are *really* "smeared"!

- Uncertainty Principle
- Apply to electrons and atoms
- Position vs. Momentum
- Time vs. Energy

Electrons, Protons & Atoms: Heisenberg

Idealized picture for single-layer graphite:

Note: *naive* idealized pic differs from *real image*!

- Uncertainty Principle
- Apply to electrons and atoms
- Position vs. Momentum
- Time vs. Energy

$$E = mc^2$$

- Relativistic Quantum Mech?!
- Uncertainty for "empty" "vacuum"
- Vacuum fluctuations
- "Empty" space roils and boils
 →...must conserve energy!

$$E = mc^2$$

"VACUUM" = "NOTHING" = "NO PARTICLES" = "NO ENERGY"

"Empty" depends on distance!

- Relativistic Quantum Mech?!
- Uncertainty for "empty" "vacuum"
- Vacuum fluctuations
- "Empty" space roils and boils
 →...must conserve energy!

- Relativistic Quantum Mech?!
- Uncertainty for "empty" "vacuum"
- Vacuum fluctuations
- "Empty" space roils and boils
 →...must conserve energy!

- Relativistic Quantum Mech?!
- Uncertainty for "empty" "vacuum"
- Vacuum fluctuations
- "Empty" space roils and boils
 →...must conserve energy!

Hawking Radiation → BH Evaporation

- Black Holes Evaporate!
- Conserved quantities
 - → Mass
 - → Charge
 - → Angular momentum
- Radiation removes mass (and charge etc.): evaporation.

Ageing Atoms in Quantum Mechanics

• Information preserved

Experimentally verified

Ageing Atoms in Quantum Mechanics

• Information preserved

Experimentally verified

Ageing Atoms in Quantum Mechanics

Information preserved

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{\hat{x}}, t) = \left(-\frac{1}{2m}\partial_{\mathbf{\hat{x}}}^2 + V(\mathbf{\hat{x}})\right) \psi(\mathbf{\hat{x}}, t)$$

Experimentally verified

Ageing Black Holes in Quantum Mechanics

- Many quantum systems = a bigger quantum system
- Stars: **huge** quantum systems
- Stars: burn-out and collapse, form Black Holes (BHs)
- BHs evaporate and...vanish?!

Ageing Black Holes in Quantum Mechanics

- Black holes are "unstable"
- Is information preserved???
- Hard to think about...
- ...without Quantum *Gravity* (very hard)

End of Part I: Relativity, Black Holes & Quantum Mechanics

- We have laid the groundwork for the talk
- We have introduced Einstein's Relativity
- We have introduced Black Holes
- We have introduced Quantum Mechanics

End of Part I: Relativity, Black Holes & Quantum Mechanics

- We have laid the groundwork for the talk
- We have introduced Einstein's Relativity
- We have introduced Black Holes
- We have introduced Quantum Mechanics

Structure of talk: 20th and 21st century physics

- 1. Gravity and Black Holes(BHs)
 - Newton
 - Einstein & Democracy
 - Schwarzschild & Black Holes
 - Hawking
- 2. Quantum mechanics & Info
 - Bohr & Heisenberg
 - Dirac & Feynman
 - Vacuum fluctuations
 - Hawking & Radiation

- 3. Thermodynamics & Hawking
 - Boltzmann & Entropy
 - Entropy & Temperature
 - Thermo & Quantum for BHs
 - (Quantum = Thermodynamics)
- 4. String Theory & Firewalls?
 - Maldacena & Holography
 - Quantum Gravity & Strings
 - Success: Strings & Black Holes
 - Firewalls & (exciting) future!

Part II: Black Holes, Quantum Gravity & Firewalls

- Introduce Thermodynamics & Entropy
- Entropy/quantum info & the Horizon
- Holography, String Theory & Maldacena
- Recent controversy & Polchinski's "Firewalls"

Part II: Black Holes, Quantum Gravity & Firewalls

- Introduce Thermodynamics & Entropy
- Entropy/quantum info & the Horizon
- Holography, String Theory & Maldacena
- Recent controversy & Polchinski's "Firewalls"

- Burning book scrambles info
- "Book" = "complex QM state"
- "Just" time evolution of a complicated QM "state"
- Information is (in principle) preserved

- Burning book scrambles info
- "Book" = "complex QM state"
- "Just" time evolution of a complicated QM "state"
- Information is (in principle) preserved

- Burning book scrambles info
- "Book" = "complex QM state"
- "Just" time evolution of a complicated QM "state"
- Information is (in principle) preserved

- Black magic for Black Holes
- Also time evolution of a complicated QM "state"

- Can't look "past the curtain"!
- Different for QM w/ BH? Is information still preserved?

- Time evolution "normal" for a few quantum states
- "Burning" keeps information

- BHs "destroy" information!
- Different evolution for TONS of quantum states in BH??

Entropy, Energy & Temperature: Boltzmann

- Thermodynamics
- Entropy (S) = disorder
- Entropy/disorder increases
- Fundamentally: macroscopic measure of micro-states
 - → Boltzmann's tombstone:

Entropy, Energy & Temperature: Boltzmann

- Thermodynamics
- Entropy (S) = **COMPLEXITY**
- Precisely: ("k" = a number)
 - →W counts states with energy E
 - → Boltzmann's tombstone:
- Entropy/complexity increases

Entropy, Energy & Temperature: Hawking

- Temperature, Energy, and Entropy: deeply related
- Precisely: Rate of entropy increase with energy gives inverse temperature
- Thus, temperature>0 means entropy grows with energy

$$\frac{1}{T} = \frac{\partial S}{\partial E}$$

- Normal matter has entropy
- Entropy cannot decrease
- Pre-collapse material for Black Holes is normal matter
- Pre-collapse material for Black Hole has entropy > 0!

S(Book) > 0

Normal matter has entropy

Entropy cannot decrease

 Pre-collapse material for Black Holes is normal matter

• Post-collapse Black Holes $S(\mathrm{Black\ Hole}) > \mathrm{TONS} \times S(\mathrm{Book}) \gg 0$ must have entropy >> 0!!!

Q: How books many is "TONS" of books, i.e. will form a BH?

A (roughly): A library from the Sun to Pluto!

- Normal matter has entropy
- Entropy cannot decrease
- Pre-collapse material for Black Holes is normal matter

Post-collapse Black Holes
 must have entropy >> 0!!!

Normal matter has entropy

Entropy cannot decrease

 Pre-collapse material for Black Holes is normal matter

Pluto = God of Underworld

Hellish library

 Post-collapse Black Holes must have entropy >> 0!!!

Laws of Thermodynamics

Black Hole Thermodynamics

- BHs vs Thermodynamics
- So: Black Holes have entropy!
- Black Holes must have "hair"!
- Accords with Hawking:
 - →Entropy vs Energy...
 - →gives Temperature (Hawking)!

Laws of Thermodynamics \longleftrightarrow Black Hole Thermodynamics

$$T_{\rm BH} = \frac{1}{8\pi M_{\rm BH}} , S_{\rm BH} = 16\pi M_{\rm BH}^2$$

$$1^{st}$$
 Law for Thermo: $dE = TdS$ \longleftrightarrow 1^{st} Law for BHs: $dE = T_{\rm BH}$ $dS_{\rm BH}$

$$2^{nd}$$
 Law for Thermo: $\frac{dS}{dt} \ge 0$ \longleftrightarrow 2^{nd} Law for BHs: $\frac{dS_{\rm BH}}{dt} \ge 0$

An Aside: Black Holes vs "Everything"

VS

- BHs vs Quantum Mechanics!
 - →BH = many quantum systems
 - →Quantum systems & info
- BHs also vs Thermodynamics!
 - →BH = many statistical systems
 - → Statistical systems & entropy
- Thermo = Quantum? Whoa!

An Aside: Black Holes vs "Everything"

The Schrodinger Equation:

$$i\partial_t \psi(x,t) \propto \partial_x^2 \psi(x,t)$$

The Heat Equation:

$$-\partial_t \phi(x,t) = \partial_x^2 \phi(x,t)$$

- BHs vs Quantum Mechanics!
 - →BH = many quantum systems
 - →Quantum systems & info
- BHs also vs Thermodynamics!
 - →BH = many statistical systems
 - → Statistical systems & entropy
- Thermo = Quantum? Whoa!

- Black Holes should retain info
 - → Quantum Mechanics says so!
 - →Thermodynamics says so!
- GR: **But how?** Can't look into the middle (bulk)!!!!
- 't Hooft: Store the info on the outer surface (boundary)?!

- Black Holes should retain info
 - → Quantum Mechanics says so!
 - →Thermodynamics says so!
- GR: **But how?** Can't look into the middle (bulk)!!!!
- 't Hooft: Store the info on the outer surface (boundary)?!

- Maldacena's example:
 - →GR in "the middle"
 - →QM on "the edge"
 - →Inside GR = Edge QM
- First "real" example of bulkboundary duality
- Details technical

- Maldacena's ex.: AdS/CFT
 - →GR in "the middle": AdS
 - →QM on "the edge": CFT
 - → AdS-Inside = Edge-CFT
- First "real" example of bulkboundary duality
- Details technical

Entropy, Black Holes & Quantum Gravity

- Entropy in statistical physics
 - → Counts number of microstates
 - →Specifically, quantum states
- Black Hole entropy > 0
 - →Black holes have many states
 - → Many *quantum* states
- "Quantum Gravity" needed!

- Entropy in statistical physics
 - → Counts number of microstates
 - → Specifically, quantum states
- Black Hole entropy > 0
 - →Black holes have many states
 - → Many quantum states
- "Quantum Gravity" needed!

- Quantum Mechanics
 - → Spatial vs Temporal evolution
 - →Asymmetry "x" vs "t"!
- Einstein Relativity
 - → Space and time interwoven
 - → Democracy and symmetry
- String Theory fuses these two

- Note: several ways to fuse QM and GR.
- Strings have led to two main victories for QM+Black Holes:
 - → Precise entropy formula!
 - → Precise holographic example!
- But String Theory ain't a cure-all! (Smoke and fire...)

An Aside on String Theory

- QM and Relativity merge well in at least three frameworks:
 - →Quantum Field Theory
 - → String Theory
 - → Worldline Formalism
- Physics is the same
- Given in different languages

An Aside on String Theory

- String Theory can give useful ideas on hard problems...
- ...by giving a new point of view on the problem.
- Strings may be fundamental.
- They ARE useful: Black Holes!

- For a lot of Quantum Gravity,
 String Theory reigns supreme
- Big part of why: Black Holes
 - → Black Hole state counting
 - → Works for very special BHs!
 - → Big test of Quantum Gravity

- For a lot of Quantum Gravity,
 String Theory reigns supreme
- Big part of why: Black Holes
 - →Black Hole state counting
 - → Works for very special BHs!
 - → Big test of Quantum Gravity
- Exact match for large Q_F!

Beckenstein – Hawking prediction:

$$S_{\rm BH} = 2\pi \sqrt{Q_H Q_F^2/2}$$

Strominger – Vafa calculation:

$$S_{\rm BH} = 2\pi \sqrt{Q_H(Q_F^2/2 + 1)} + \cdots$$

- For most Quantum Gravity,
 String Theory reigns supreme
- Moreover: Holography!
- Maldacena's Hologrophy:
 - → Purely "stringy" origin
 - →QM on edge understood
 - → Gravity in middle has BHs!

- For most Quantum Gravity,
 String Theory reigns supreme
- "AdS/CFT" = real Holography!
- Maldacena's AdS/CFT:
 - → Purely "stringy" origin
 - →QM on edge understood
 - → Gravity in middle has BHs!

Maldacena and Witten et al:

 $Z_{\text{Quantum}}(\text{edge}) = Z_{\text{Black Hole}}(\text{middle})$

NEW Problems for Black Holes: Firewalls?

Almheiri, Marolf, **Polchinski** & Sully

"AMPS" Firewall & arXiv:1207.3123

- String Theory ain't a cure-all: works well in SPECIAL cases
- But big questions loom...
- Hawking: BH info from outside? Old info paradox...
- AMPS: BH info for person falling into BH?! New version!

NEW Problems for Black Holes: Firewalls?

- QM and GR: Tension AGAIN
- You hit the firewall on way in
- AMPS Firewall torches all
- Qualitative shift in our view of Black Holes needed?

Black Holes from GR with Quantum & Thermo

Black Holes exist! Amazing!

Quantum: Hawking Radiation

• Thermodynamics: Entropy

 $= \sum_{N=1}^{\text{TONS}} \left(\sum_{N=1}^{\text{MARTMAIN}} \right)$

 Robust: Quantum Mechanics and Theromdynamics require the same things for BHs!

Black Holes from GR with Quantum & Thermo

- BH = Relativity's **1**st solution!
- BH information paradox...
- ...and String Theory success
 - → Holography: Edge = Middle!
 - → Precise BH entropy!
- Firewall paradox: unresolved!

Black Holes from GR with Quantum & Thermo

• Black Holes: First "real" solutions to GR (from 1916)!!

- Super exciting! Hitting them "just a little bit" starts whole avalanches of new physics!!
- 102 years old & going strong!

Structure of talk: 20th and 21st century physics

- 1. Gravity and Black Holes(BHs)
 - Newton
 - Einstein & Democracy
 - Schwarzschild & Black Holes
 - Hawking
- 2. Quantum mechanics & Info
 - Bohr & Heisenberg
 - Dirac & Feynman
 - Vacuum fluctuations
 - Hawking & Radiation

- 3. Thermodynamics & Hawking
 - Boltzmann & Entropy
 - Entropy & Temperature
 - Thermo & Quantum for BHs
 - (Quantum = Thermodynamics)
- 4. String Theory & Firewalls?
 - Maldacena & Holography
 - Quantum Gravity & Strings
 - Success: Strings & Black Holes
 - Firewalls & (exciting) future!

Black Holes, Information, and String Theory

Thanks for your time!!

Supplementary: Verifying Pluto's Library = BH!

DRIGIN OF THE "SUN TO PLUTO" SIZED LIBRARY

= A BLACK HOLE:

① For any more, M, there is the arracided Schwarzsdvild reduct, which is given by $R_s = \frac{2G_N M}{r^2}$.

Here . Gr. = Newtow cowood,

. M = Mars of the star, and

. C = the speed of 1/2/4.

2) To find that "radiu" I did the things:

p = more - doubt of the library.

- Assumed And the library of books was NOT gravitationally interacting or rather, that the books could not be compressed. Thus, the man down of the books was told degral,
- (B) The give the mass of the library as a function of radio": $M(R) = \frac{4}{3} \pi R^3 p$, where SM = Mars of library, R = Radio of library, and

DO I then he rolved for Rs = 2GN M for R=Rs: $R_s = R = \frac{2 G_N}{C^2} M(R) = \frac{2 G_N}{C^2} \left(\frac{4\pi}{3} R^3 S \right) \frac{120181031-0000}{120181031-0000}$ $= \frac{8\pi}{3} \frac{G_N}{c^2} g \cdot R^3$ $\Rightarrow R^{-2} = \frac{2\pi}{3} \frac{G_N}{N} P$ => R= \(\frac{8\pi}{8\pi}\) \(\frac{\chi_N}{2}\) p 3 To get octual number to ACTHALLY End the rooting you @ Look-up GN and C. Va Wikipedla, you got on answer like S. GN = 7 ×10-11 m3
kg.32 (. c = 3×10 & m, and

(B) Recall Hof Looke ALMOST float in water. Thus we have $g \simeq \frac{1}{cm^3} = \frac{10^3}{m^3}$

(You, work is SWPER HEAVY! DNE CURIC

METER OF WATER = ONE TON OF WATER!)

- Plugsly Here number in, you get remoting like 3 $1.2 \times 10^{13} \text{ motor} \approx \frac{1}{\sqrt{\frac{87}{3} \frac{GN}{c^2} P}}$ [2018/031-0AM
- (I) Now, to cared this into sounding LESS ABSTRACT,

 We can ask how long it takes / John to got account

 from the CENTER of this BALL of RADIUM

 1013 motors to the EDGE. To do this, we simply

 do the following:

$$f = \frac{d \omega h_{\text{NT}}}{speed} \Rightarrow \frac{1.2 \times 10^{13} \,\text{m}}{3 \times 10^{13} \,\text{m/s}} \simeq 4 \times 10^{4} \,\text{gp seconds}$$

- (1) Now recall it takes ~ 5 × 10 2 seconds for light from the

 SWN to reach EMTN! \$ 10 4×10 4 × 80× R goods sm!
- (6) Now the average obstoner between 6th and Plano is

 ~ 40 * Roun-EARTH. To this library would be

 Tons & EGGGR (~ 8 x) then even the soler

 system.

Supplementary: Verifying Pluto's Library = BH!

