Information processing in nanoscale systems

Mark Rudner

Niels Bohr International Academy

100 years after Bohr, the basic laws and players are established

1913

Py Ad Im has En Gd Th Dy A B B I I I I A C I B C B I I I I I

Image from www.periodni.com

2013

Collective behavior unlike that of individual constituents

Electrons in a crystal

Superconductivity

Each phase is a new "vacuum," with new elementary particles

Ex: vortices in exotic 2D superconductor

State retains "braiding" history

New class of "topological" materials recently discovered

Image from: images-of-elements.com

VS.

Image from: www.sttic.com.ru

Smaller, faster, lighter; underlying idea remains the same

4.87 inches 123.8 mm

1947

Today

Here's how far we've come:

Nanoscale regime: where quantum meets classical

$N\sim 10^{23}$

 $N \sim 1 - 10$

The Plan

I. Miniaturization of solid state electronics

II. Brief introduction to quantum mechanics

III. Nanoelectronic devices

IV. Quantum nanoelectronic devices

Part I: Miniaturization of solid state electronics

Goals: understand Field Effect Transistor's
I) basic operating principle*
2) role in information processing

*Will set up discussion for quantum devices

Transistor is the basic functional element in a digital processor

Minimalist view of a (digital) computer

Store information (discretely) in state of physical system

Control behavior of system based on this information

Mechanical analogy: how to store information with water

Example: store a number in binary

Mechanical analogy: how to store information with water

Example: store a number in binary

A "water transistor:" use buckets to control flow

A "water transistor:" use buckets to control flow

Water-based digital logic (approximate NOR gate)

Filling of inputs determines output:

Electrical transistor: use charge to control electrical channel

Conductivity expresses how easy/hard it is to make current flow

 $(Conductivity) = (Carrier Density) \cdot (Mobility)$

Idea: control conduction through channel by changing carrier density

Electrical transistor: use charge to control electrical channel

Electrons trapped at interface, move in 2D layer

Charge on gate controls electron density below

low voltage (0): channel opened
 high voltage (1): channel blocked

low voltage (0): channel blocked high voltage (1): channel opened

А	В	Out
0	0	

low voltage (0): channel opened
 high voltage (1): channel blocked

low voltage (0): channel blocked high voltage (1): channel opened

Α	В	Out
0	0	+5V (I)

low voltage (0): channel opened
 high voltage (1): channel blocked

low voltage (0): channel blocked high voltage (1): channel opened

А	В	Out
0	0	+5V (I)
0	I	+5V (I)
I	0	+5V (I)
		0V (0)

Now, make it smaller. What could go wrong?

Part II: Brief introduction to quantum mechanics

Goals: introduce basic principlesI) wave particle duality2) quantum tunneling

A classical particle has a position and momentum

A wave has <u>wavelength</u> and a <u>frequency</u>

wave repeats over and over and over...

When two waves come together, they <u>interfere</u>

When two waves come together, they interfere

Constructive interference

Destructive interference

If waves have different wavelengths, beats appear

With many different wavelengths, can make a localized spike

In QM, <u>particle</u> motion is described by equation for a <u>wave</u> (!)

De Broglie's relation between momentum and wavelength:

$$(wavelength) = \frac{(Planck's Constant)}{(momentum)}$$

PhD thesis, 1924

A localized particle requires many different wavelengths

Heisenberg Uncertainty Principle

Tradeoff between certainty of position and momentum

Quantum tunneling: "matter wave" cannot be fully trapped

Tunneling speeds up exponentially as barrier thickness shrinks

Smaller transistors leads to greater leakage, power consumption

a) Bad for the **environment**

b) Excessive heating hinders further downsizing

Part III: Nanoelectronic devices

Goals: introduce common elementsI) quantum dot2) single electron transistor

Nature Materials 12, 494 (2013)
A quantum dot is an "artificial atom"

Photo by Felice Frankel, MIT (web.mit.edu)

Early 1900s: energy absorbed/emitted in discrete amounts

Figures from astro-canada.ca

Wavelength (momentum) set by size of confinement region

Electron confined in nanoscale "box"

Confinement reduces wavelength, increases energy scale

Analogy:

Smaller drum, higher frequency

 $(energy) = (Planck's Constant) \cdot (frequency)$

Discrete energies visible when splitting exceeds resolution

Electron confined in nanoscale "box"

For 100 nm dot, temperature must be close to 1 Kelvin

Image from www.magnet.fsu.edu

For 100 nm dot, temperature must be close to 1 Kelvin

Image from www.magnet.fsu.edu

How big is 100 nm?

200 atoms side-by-side 1/100 size of red blood cell 1/1000 width of a human hair

Use gates to deplete 2D layer, trap electrons in small puddles

electron sea

Electrons flow one by one through the dot

Electrons flow one by one through the dot

Quantum Dot

Once filled, charge of electron prevents another from entering

Single electron transistor: operating on the edge

Single electron transistor: conductance very sensitive to voltage

Similar principle allows sensing of single electron tunneling

Similar principle allows sensing of single electron tunneling

From PhD thesis of Sami Amasha, MIT (2008)

Part IV: Quantum nanoelectronic devices

Goals: introduce concepts of 1) electron spin 2) "quantum bit"

Nature Materials 12, 494 (2013)

Information is physical, subject to the laws of physics

Can a system governed by quantum mechanical laws compute better?

Besides mass and charge, electron also has "spin"

A spin is like a tiny magnet,

which prefers to align with a magnetic field

State of spin is a superposition of only two choices: up or down

"Down" spin moves to stronger field

Image from ece.neu.edu

A bit also has two choices (0 or 1); this is a quantum bit

Classical bit

Bit is on (1) or off (0)

Quantum bit

Qubit can be on (1) **AND** off (0)

The spin of a single electron in a quantum dot is a "qubit"

Image from Yacoby group, Harvard

Original proposal: D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

Quantum parallelism: use superposition run all inputs at once

Each case run one by one

Quantum computer runs all at once

On any run, only get to see one of the possible answers

Clever tricks use interference to amplify desired output

Example: Highly efficient searching possible

"Big Data" applications Sociology Genomics Economics This page intentionally left blank

Bonus section: Carbon based nanomaterials

Goals: become familiar with

- I) graphene
- 2) carbon nanotubes

In nature, carbon comes in many forms

Graphite: stacked 2D sheets of carbon

* Strong in-plane bonds, weak interaction between planes

Graphite: stacked 2D sheets of carbon

$$\begin{array}{c} A_{ik} \cos g + B_{ik} \cos D + C_{ik} \sin g + D_{ik} \sin D \\ \mu g \\ \mu$$

Graphene: a single atomic plane of carbon

Exfoliation (Scotch tape) preparation protocol

Exfoliation (Scotch tape) preparation protocol

2010 Nobel Prize

Applications: is carbon the new silicon?

High mobility (fast ops.)

Tunable carrier density

No band gap 💌

Applications: adsorbed gas detection

Directly exposed surface Conductivity highly sensitive to doping

Applications: frequency multiplier (MIT, data unavailable)

Conductivity minimum at zero field, symmetric for +/-

Data from Geim/Novoselov group, Manchester, UK

Kinetic energy of low energy electrons very strange

K.E. = $v_F |\vec{p}|$ doesn't look like usual kinetic energy of a particle

... OR DOES IT?

Linear momentum-energy relation for relativistic massless particle

Invariant relationship:

$$E^2 - p^2 c^2 = (mc^2)^2$$

$$E = \sqrt{(mc^2)^2 + p^2c^2}$$

if
$$m = 0$$
, $E = c|p|$

neutrinos, photons, ...

Klein Paradox: perfect transmission through any barrier

Originally noted for ultra-relativistic electrons, but hard to observe

Perfect transmission at normal incidence, any barrier

