News from NBIA

Condensed Matter Physics: from new materials to quantum technology

Mark Rudner

~100 years after Bohr, the basic laws and players are established

1913

Image from www.periodni.com

2013

boson

Source: AAAS

Collective behavior unlike that of individual constituents

Water molecules

Ocean waves

Electrons in a crystal

Superconductivity

"For theoretical discoveries of topological phase transitions and topological phases of matter"

David Thouless (U. Washington)

Duncan Haldane (Princeton)

Michael Kosterlitz (Brown)

Nobel prize, 2016

Topologically distinct objects cannot be smoothly interconverted

Simple Loop

Twisted Strip

Bohr model: wave must "catch its tail" going around a ring, number of wavelengths is quantized and topological

Vortices in superconductors: "quantum whirlpools"

*Kosterlitz + Thouless: vortices crucial for phase transition in 2D

Hall effect: out-of-plane magnetic field generates voltage transverse to applied current

Classically, Hall resistance is proportional to ${\cal B}$

Hall resistance features extremely flat steps at low T, high B

Hall resistance features extremely flat steps at low T, high B

Key theoretical insight, linking robustness to topology:

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

Let's play a game: conductor or insulator?

Image from: images-of-elements.com

Let's play a game: conductor or insulator?

Let's play a game: conductor or insulator?

Image from: www.sttic.com.ru

New states with *fractional* values of ν : "split" the electron!

New states with fractional values of ν : "split" the electron!

Opportunities to discover new fundamental particles, in tabletop experiments!

We aim to understand the "dance" of the electrons

We aim to understand the "dance" of the electrons

We aim to understand the "dance" of the electrons

Graphite: stacked 2D sheets of carbon

* Strong in-plane bonds, weak interaction between planes

Graphite: stacked 2D sheets of carbon

Aik an
$$g + Bak$$
 as $D + Cit son $g + Dik$ sain D

Here $x = g$

Here $x = g$
 $y = gx + gy$
 $y = gx + gy$$

Graphene: a single atomic plane of carbon

Exfoliation (Scotch tape) preparation protocol

Applications: sensitive, high-speed photodetectors

Applications: adsorbed gas detection

Directly exposed surface

Conductivity highly sensitive to doping

Applications: is carbon the new silicon?

High mobility (fast ops.)

Tunable carrier density

Small samples

No band gap

The future: hybrid materials built layer-by-layer

How can we use lasers, microwaves to dynamically control the behavior, properties of quantum systems?

Present

$$GaAs \rightarrow HgTe?$$

$$\rightarrow \dots ?$$

\$100M Question: Can a system governed by quantum mechanical laws compute better?

Part II: Information is physical

Minimalist view of a (digital) computer

Store information (discretely) in state of physical system

Control behavior of system based on this information

Transistor is the basic functional element in a digital processor

Smaller, faster, lighter; underlying idea remains the same

several inches

2.31 inches 58.6 mm

4.87 inches 123.8 mm

Today

Question: how big would an iPhone be with original transistors?

Here's how far we've come:

Here's how far we've come:

Mechanical analogy: how to store information with water

Example: store a number in binary

Mechanical analogy: how to store information with water

Example: store a number in binary

A "water transistor:" use buckets to control flow

A "water transistor:" use buckets to control flow

Water-based digital logic (approximate NOR gate)

Filling of inputs determines output:

Electrical transistor: use charge to control electrical channel

Conductivity expresses how easy/hard it is to make current flow

 $(Conductivity) = (Carrier Density) \cdot (Mobility)$

Idea: control conduction through channel by changing carrier density

Electrical transistor: use charge to control electrical channel

Electrons trapped at interface, move in 2D layer Charge on gate controls electron density below

low voltage (0): channel blocked high voltage (1): channel opened

Now, make it smaller. What could go wrong?

Quantum tunneling: "matter wave" cannot be fully trapped

Tunneling speeds up exponentially as barrier thickness shrinks

Smaller transistors leads to greater leakage, power consumption

- a) Bad for the **environment**
- b) Excessive heating hinders further downsizing

Part III: Quantum nanoelectronic devices

Early 1900s: energy absorbed/emitted in discrete amounts

A quantum dot is an "artificial atom"

Photo by Felice Frankel, MIT (web.mit.edu)

Confinement reduces wavelength, increases energy scale

Analogy:

Smaller drum, higher frequency

 $(energy) = (Planck's\ Constant) \cdot (frequency)$

For 100 nm dot, temperature must be close to 1 Kelvin

Image from www.magnet.fsu.edu

How big is 100 nm?

200 atoms side-by-side
1/100 size of red blood cell
1/1000 width of a human hair

Use gates to deplete 2D layer, trap electrons in small puddles

Single electron tunneling in and out of device is sensed directly

Besides mass and charge, electron also has "spin"

A spin is like a tiny magnet,

which prefers to align with a magnetic field

State of spin is a superposition of only two choices: up or down

"Down" spin moves to stronger field

A bit also has two choices (0 or 1); this is a quantum bit

Classical bit

Bit is on (1) or off (0)

Quantum bit

Qubit can be on (I) AND off (0)

The spin of a single electron in a quantum dot is a "qubit"

Image from Yacoby group, Harvard

$$\begin{array}{cccc} \downarrow & = & 0 \\ \uparrow & = & 1 \end{array}$$

Original proposal:

D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

Quantum parallelism: use superposition to run all inputs at once

Each case run one by one

Quantum computer runs all at once

On any run, only get to see one of the possible answers

Clever tricks use interference to amplify desired output

Example: Highly efficient searching possible

"Big Data" applications
Sociology
Genomics
Economics

• • •

low voltage (0): channel opened high voltage (1): channel blocked

low voltage (0): channel blocked

high voltage (1): channel opened

Α	В	Out
0	0	

low voltage (0): channel opened high voltage (1): channel blocked

low voltage (0): channel blocked

high voltage (1): channel opened

Α	В	Out
0	0	+5V (I)

low voltage (0): channel opened high voltage (1): channel blocked

low voltage (0): channel blocked high voltage (1): channel opened

Α	В	Out
0	0	+5V (I)
0	I	+5V (I)
Ī	0	+5V (I)
Ī	I	0V (0)